State of the Science: Land Use Modeling in Amazônia

(Accomplishments and Remaining Challenges)

By

R. Walker (MSU) and E. Moran (Indiana University)

with contributions from

Britaldo Soares-Filho, Stephen Walsh, and Peter Deadman

AMAZONIAN LCLUC MODELS 1

- SimAmazônia
- NEA-AMB
- LUCITA
- Econometric
- Spatial Behavior
- Cartographic Models
- Theoretical Frameworks

(e.g, household life cycle, multi-phasic response, lot-life cycles) Soares-Filho, Nepstad, et al.

Walsh, et al.

Deadman, Moran, et al.

Pfaff, Walker, Reis, et al.

Arima, Walker, et al.

Laurance, et al.

McCracken, Vanwey, Moran, Bilsborrow, Barbieri, Brondizio, et al.

MANY DIFFERENT MODELS

• Theoretical model:

may not be at all interested in the future, only the "present." Theory building

Projection model:

Not interested in theory,

only in the "future." Focused on projection.

AMAZONIAN MODELS: *the questions asked*

Given **X**, what happens to **Y**?

projection models:

X is a scenario, and Y is a landscape of significance, e.g., AML

theoretical models:

X a variable setting (e.g, household structure), and Y is also a landscape, more circumscribed

AMAZONIAN LCLUC MODELS 2

An *ability* and *intention*

1) To predict the future (projection) -- **or** ---

2) To predict outcomes given specified conditions (sensitivity)

Computationally intensive modeling Computer "modeling"

AMAZONIAN LCLUC MODELS 3

- SimAmazônia
- Econometric
- NEA-AMB and LUCITA
- Spatial Behavior

Projection

Projection

Theoretical/ "projection"

Theoretical/ "projection"

Model structure and functionality Result types

PROJECTION MODELS

1) SimAmazônia

2) Econometrics

SimAmazônia

A Spatially Explicit Simulation Model of Deforestation for the Amazon Basin Amazon Scenarios Project

Woods Hole Research Center

Universidade Federal de Minas Gerais

IPAM – INSTITUTO DE PESQUISA AMBIENTAL DA AMAZÔNIA

Soares-Filho, Nepstad et al.

SimAmazônia

BEST CASE: Protected Area expansion and implementation, strict enforcement, low rates of agriculture and cattle herd growth, population immobility, limited road paving.

WORST CASE: Protected areas loosely implemented, lax enforcement, high rates of agriculture and cattle herd growth, high population mobility, and extensive road paving.

Soares-Filho, Nepstad et al.

ECONOMETRIC MODELS

Like SimAmazônia:

projections in time, as a function of scenarios LCLUC at disaggregate scale

"fit" using geographic data : *municipio, census tract*

$$Y = b_0 + b_1 X_1 + b_2 X_2 + \dots + b_k X_k$$
$$Y_t = F_{t-1} - F_t$$
$$Y_t = b_0 + b_t X_t + b X$$

Pfaff, Walker, Reis, et al.

SAMPLE PROJECTION OUTPUT

Theoretical/"projection"

1) NEA-ABM

2) LUCITA

3) Spatial Behavior

NEA-AMB

LCLU Patterns in the Northern Ecuadorian Amazon

Walsh et al. NEA-ABM

LUCITA

Land Use Change In The Amazon

- Transamazon Highway west of Altamira
- 3916 properties studied, ~7,000 sq km

AGENT-BASED MODEL, or AMB

Agent: decision-making entity, is able to act flexibly and autonomously

Environment: where agent interacts

Rules: define the relationship between agents and their environment

(action space: two dimensional, gridded landscape, like a CA)

Layer 1 Individual agents

Layer 2 LULC

Layer 3 Parcels

Layer 4 Farms

Walsh et al. NEA-ABM

AGENT-ORIENTED FLOWCHART

Deadman, Moran, et al.

LU TRAJECTORY large families, high capital

Deadman, Moran, et al.

Land Use Scenario, year 28 (1998)

Deadman, Moran, et al.

SELECTED FINDINGS

- Changes in land tenancy can increase deforestation and land fragmentation.
- Forest succession related to off-farm employment, household assets, etc.
- Spatial structure of LCLUC related to household demographics, year of farm establishment, farm size, etc.

SPATIAL BEHAVIOR MODELING

IMAZON product

NETWORK MODEL IN TERRA DO MEIO

Equate road networks with Graphs

Apply graph theory to identify optimal networks

Simulate the optimal graphs, GIS search algorithm

Compare to actual networks

ERROR ASSESSMENT AND VALIDATION

ACCOMPLISHMENTS

- Models of deforestation at multiple scales, with projection capability
- Models that project *patterns* of deforestation, given a road network
- Models that generate road networks

• Deforestation and Fragmentation

CHALLENGES

1) Goodness-of-fit (Pontius, Arima, Walker)

- 2) Treatment of Uncertainty (Moore)
- 3) Forest dynamics, with transition (Moran) (good theory for $F \rightarrow Ag$, not from $Ag \rightarrow F$ Forest Transition Theory)
- 4) Other agents in ABMs (what about large operators?)
- 5) General equilibrium, with price signals (Cattaneo)

THANKS TO

NASA LBA NASA LCLUC

NSF NOAA NIH