The Yamal LCLUC Study: Vegetation Analysis and Mapping along a 900-km Arctic transect

D.A. Walker(1), H.E. Epstein(2), H.A. Maier(1), G.V. Frost(2), M.K. Raynolds(1), U.S. Bhatt(1), J. Comiso(3), R. Daanen(1), D.S. Drozdov(4), B. Forbes₅), A.A. Gubarkov₍₄₎, G. Jia₍₆₎, E. Kaarlejarvi₍₅₎, O. Khitun₍₇₎, A.V. Khomutov₍₄₎, P. Kuss₍₈₎, M.O. Leibman₍₄₎, G. Matyshak₍₉₎, N.G. Moskalenko₍₄₎, P. Orekhov₍₄₎, J.E. Pinzon₍₃₎, V.E. Romanovsky₍₂₎, C.J. Tucker₍₃₎, N.G. Ukraintseva₍₄₎, Q. Yu₍₂₎

1. University of Alaska Fairbanks, AK, USA; 2. University of Virginia, Charlottsville, VA, USA; 3. NASA Goddard, Greenbelt, MD, USA; 4. Earth Cryosphere Laboratory, Moscow and Tyumen, Russia; 5. Arctic Centre, University of Lapland, Rovaniemi, Finland; 6. Institute of Atmospheric Physics, Beijing, China; 7. Komarov Botanical Institute, St. Petersburg, Russia; 8. University of Bern, Switzerland; 9. Moscow State University, Russia

Poster presented at the NASA LCLUC All Scientist Meeting, Bethesda, MD, 20-22 April 2010

- Examines the roles of climate, substrate and disturbance on NDVI.
- Ground observations \bullet along the Yamal transect.
- Hierarchy of mapping ulletand NDVI analyses.

One of two transects through all 5 Arctic bioclimate subzones

Yamal Transect		Lewis Glacier		-
	North American Arctic Transect (NAAT)	J.		
	North American Arctic Transect (NAAT)	Bioc	limate	
	North American Arctic Transect (NAAT)	ke Bioc	limate Subzone A	
	North American Arctic Transect (NAAT) Toolik Lai	xe Bioc	limate Subzone A Subzone B	
	North American Arctic Transect (NAAT)	(e S	limate subzone A subzone B subzone C	

Sub- Zone	Mean July Temp	Shrubs
Α	1-3 °C	none
В	3-5 °C	prostrate dwarf-shrubs (<5 cm)
С	5-7 °C	hemi-prostrate dwarfshrubs (5-15cm
D	7-9 °C	erect dwarf-shrubs (15-40 cm)
E	9-12 °C	low-shrubs (40-200 cm)

What changes along the tundra bioclimate gradient?

- 10° C increase in the Mean July temperature.
- 10-fold increase in zonal biomass
- 10-fold increase in productivity
- 5 to 10-fold increase in vascular-plant diversity

Yamal Transect. Black squares are study locations. Red line is 2010 helicopter route.

Tundra study locations (Forest-tundra sites at Kharp and Nadym not included)

Ostrov Belyy (White Island)

Arctic tundra, bioclimate subzone B (High Arctic tundra)

Site 1: Moist loamy tundra (Carex bigelowii, Calamagrostis holmii, Salix polaris, Hylocomium splendens)

Site 2: Dry sandy tundra

(Gymnomitrion coralloides, Salix nummularia,

Sphaerophorus globosus, Racomitrion

lanuginosum)

Vaskiny Dachi

Arctic tundra, bioclimate subzone D (northern hypoarctic tundra)

Site 3: Sandy, alluvial terrace (Ledum decumbens, Salix nummularia, Carex bigelowii, Sphaerophorus globosus, Gymnomitrion coralloides, Polytrichum strictum.)

Cryogenic landslides near VD Eroded marine terraces

Kharasavey

Arctic tundra, bioclimate subzone C (Arctic tundra)

Site 1: Loamy tundra (Carex bigelowii, Calamagrostis holmii, Salix polaris, Hylocomium splendens, Aulacomnium turgidum, Dicranum spp.)

Site 2b: Sandy tundra (Salix nummularia, Luzula confusa, Dicranum elongatum, Spaerophorus globosus, Gynomitrion coralloides)

Kharasavey tundra from the air

Laborovaya

Arctic tundra, bioclimate subzone E (southern hypoarctic tundra)

Site 1, Loamy (Betula nana, Salix phylicifolia, Vaccinium uliginosum. V. vitis idaea, Carex bigelowii, Dicranum spp.)

- Site 2: Sandy (Betula nana, Carex bigelowii, Vaccinium uliginosum, Cladonia spp., Sphaerophorus globosus, Flavocetraria nivalis, Polytrichum *strictum, Dicranum elongatum*)
- Zonal site, Polar Ural foothills

Data collected

Land-cover and NDVI analysis

Land-cover mapping with 30-m Landsat TM data

Analysis of AVHRR-NDVI with terrain map units

Landslides and cryogenic erosion

- Landsat mosaic provides intermediate-resolution terrain information of the whole peninsula.
- Mosaic is composed of many scenes with different acquisition dates (May to September). Difficult to get consistent land-cover classification or MaxNDVI for the whole peninsula.
- Land-cover maps produced separately for each LCLUC location.
- Next step: combine all decadal and mid-decadal mosaics to get one coverage displaying MaxNDVI for all pixels.

Maier and Walker. 2010. 2nd Yamal LCLUC Workshop.

References:

Bhatt, U.S., et al., 2010 in revision, Panarctic trend and variability in the land-ocean margins of sea-ice concentrations, land-surface temperatures, and tundra vegetation greenness: Earth Interactions.

Walker, D.A., et al., 2010 in press, Cumulative effects of rapid land-cover and land-use changes on the Yamal Peninsula, Russia in Gutman, G., Groismann, P., and Reissel, A., eds., Eurasian Arctic Land Cover and Land Use in a Changing Climate: New York, Springer.

Walker, D.A., et al., 2009, Spatial and temporal patterns of greenness on the Yamal Peninsula, Russia: interactions of ecological and social factors affecting the Arctic normalized vegetation index: Environmental Research Letters, v. 4, p. doi:10.1088/1748-9326/4/4/045004.

NDVI analysis by terrain units

M.K. Raynolds. 2010. 2nd Yamal

LCLUC Workshop

landschaft.

• NDVI of zonal uplands does not vary much across

- uplands. Landschaft does not delineate some known sandy areas (e.g. O. Belyy).
- Broad river channels have highest NDVI (graph below) despite large amount of lakes in the valleys.
- 1-km data are not fine enough to resolve the greening patterns within the highly eroded upland areas (right: photos).

Photos by D.A. Walker

- Large effect of landslides on spatial patterns of greenness in many areas.
- Without quantitative measures of the rate of change, it is hard to determine if this is a factor with respect to recent temporal greening trends (Bhatt et al. 2010, in review).
- Need temporal series of high-resolution satellite images and/or photos in landslide areas to assess the rate of change.

http://www.geobotany.uaf.edu/yamal/