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Domains of remote sensing

• Spatial domain 

• Spectral domain

• Temporal domain

• Angular domain

• Polarization domain



Spectral domain

• Spectral location of “bands” 
–i.e. visible, IR, SWIR

• Band width 
–how wide are spectral positions?

• Number and frequency of bands
–how many and at what frequency?



Electromagnetic Spectrum

The Sun produces a continuous spectrum of electromagnetic radiation 
ranging from very short, extremely high frequency gamma and cosmic 
waves to long, very low frequency radio waves



Spectral frequency
(how often do you sample the spectrum) 

broadband example



Spectral frequency
(how often do you sample the spectrum) 

hyperspectral example
(hyper [many] - spectral)



Spectral bandwidth

Landsat Band 6
spectral response





Dry vs. Green vegetation



Leaf reflectance and absorption





color aerial photo
visible spectrum

color aerial photo
NIR spectrum



Spectral frequency

hyperspectral cube



Imaging spectroscopy
what is imaging spectroscopy?

• systems with narrow spectral bands used to obtain a 
continuous spectrum of electromagnetic radiation

• complete characterization of spectral properties

• more detail – reveals surface chemistry, physical 
properties 
and geometry

• new capabilities for                                                           
analysis 

• spectral libraries



Motivation

• Imaging spectrometry provides fundamental spectral 
information that is not accessible to broad band systems

• Imaging spectrometry provides fundamental 
measurements that add value to broad band systems

• Imaging spectrometry provides flexibility, enabling the 
simultaneous solution of numerous remote sensing 
problems
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Applications



Atmospheres

• The atmosphere imposes its signature upon all remote 
sensing measurements

• The atmosphere must be characterized to solve for 
surface reflectance

• Various atmospheric constituents can be mapped using 
an imaging spectrometer

Courtesy of Dar Roberts
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Emission Spectra of the Sun and Earth with no 
Atmosphere

From Robert Green



Fundamental Processes

Modified from Robert Green

Scattering: Dominates shortest
wavelengths, interacts with atmospheric
molecules. At longer wavelengths, cloud 
droplets or aerosols/smoke

Electronic Absorption
O3 (UV), O2 (762 nm)

Vibrational/Rotational
O3 (9.6 µm)

Vibrational absorption
H2O, CO2, CH4

Atmospheric Windows

Rotational
CO2, H2O



Impact of Water Vapor

• Water vapor is unique in that it varies considerably over 
space and time
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Radiative Transfer Solution for Reflectance 
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Models and Measurements

Modeled Radiance

Spectral Fit in Water Vapor Band

Retrieved Reflectance
Ρλ  =  (Lλs - Lpathλ)/Ldirectλ 
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Reflectance Product:
Water vapor and Liquid 

water

• Liquid water
– Measures water in leaves
– Primarily structural

• Water vapor
– Inversely related to 

topography
– Varies temporally
– Related to ET

Roberts et al., 1997, RSE



Temporal Changes in Water Vapor

Roberts et al., 1997, RSE



Can Methane be Mapped With Hyper-Spectral 
Sensors?
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Why Map Methane?

• Methane is a strong greenhouse 
gas with large absorption 
coefficients at ~2300 nm and 1700 
nm

• Methane is a far stronger 
absorber than Carbon Dioxide 
but has a lower impact because of 
a much lower concentration in the 
atmosphere
– CO2: ~ 370 ppm
– CH4: ~ 1.9 ppm
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AVIRIS Measures of Methane
6-14-2001
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Fire Temperature Retrievals

• The primary focus on fire temperature retrieval has 
been in the thermal

• Thermal systems tend to saturate at high fire 
temperatures

• In imaging spectrometer, similar to AVIRIS provides a 
wide range of temperature retrievals
– 500K to over 1500K
– The system cannot saturate because there is always a signal 

at shorter wavelengths

Courtesy of Dar Roberts
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Planck Functions and 
The Solar Irradiance Spectrum

0

72.8471

145.6943

218.5414

291.3885

364.2356

437.0828

509.9299

582.7770

655.6241

728.4713

801.3184

874.1655

947.0126

1019.8598

0 3,571.429 7,142.857 10,714.286 14,285.714 17,857.143 21,428.571 25,000.000

R
ad

ia
nc

e 
(µ

W
/c

m
^2

/n
m

/s
r)

Wavelength (nm)

600 °K
800 °K
1000 °K
1200 °K
Sun

From Robert Green



Methods

• Multiple Endmember Spectral Mixture Analysis (MESMA) 
was used to model each pixel in the AVIRIS image

• Each pixel was modeled as a combination of:
– 1 emitted thermal radiance endmember 
– 1 reflected solar radiance endmember
– Shade (zero radiance)

• Emitted thermal radiance endmembers were modeled using 
MODTRAN
– Ranged from 400-1500 K (260°-2240°F) at increments of 10 K

• Reflected solar radiance endmembers were selected from the 
image using Endmember Average RMSE (EAR)
– Six possible endmembers: riparian, dense chaparral, sparse chaparral/

sagescrub, grass, soil and ash

Courtesy of Dar Roberts
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Reflected Solar Radiance Endmembers
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Subset of Emitted Thermal Radiance 
Endmembers
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Example: Mixed Radiance
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Retrieved Temperature Endmembers

Dennison et al., 2005 Courtesy of Dar Roberts
UCSB



Retrieved Temperature Fraction

Dennison et al., 2005 Courtesy of Dar Roberts
UCSB



Dense Chap.
Land Cover Ash

Soil
Riparian Sparse Chap.

Grass

Dennison et al., 2005 Courtesy of Dar Roberts
UCSB



Motivation for Urban 
Environments

• Urban Environments are Challenging
–The diversity of materials is high
–The scale at which surfaces are homogeneous is 

typically below the spatial resolution of spaceborne 
and airborne sensors

• New Remote Sensing Technologies need to be Evaluated
–Hyperspectral: AVIRIS, Hyperion, HYMAP
–Hyperspatial: IKONOS Panchromatic
–LIDAR: Fine vertical resolution
–SAR: Interferometry

Courtesy of Dar Roberts
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AVIRIS - Santa Barbara, California
Oct 11, 1999 low-altitude data - 4 meter GIFOV

Red 1684 nm
Green 1106 nm
Blue 675 nm

Courtesy of Dar Roberts
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Each pixel is a spectrum
Potential for library development is large

AVIRIS 991011 Red = 1684 nm
Green = 1106 nm
Blue = 675 nm
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Field Spectra Summary
• Over 6,500 urban field spectra were collected throughout Santa 

Barbara in May & June 2001
• Field spectra were averaged in sets of 5 and labeled appropriately in 

building the urban spectral library
• The resulting urban spectral library includes:

– 499 roof spectra
– 179 road spectra
– 66 sidewalk spectra
– 56 parking lot spectra
– 40 road paint spectra
– 37 vegetation spectra
– 47 non-photosynthetic vegetation spectra 

• (ie. Landscaping bark, dead wood)
– 27 tennis court spectra
– 88 bare soil and beach spectra
– 50 miscellaneous other urban spectra

Sample Concrete Spectra
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Example Spectra: Roofs

Key Absorptions
Composite Shingle:
 carbonates, asphalt
Wood Shingle:  
  ligno-cellulose
Tile: iron-oxides
Plants: Liquid water, 
chlorophyll, ligno-cellulose

Note, age is important

Dennison et al., 2005 Roberts and Herold, 2004



Example Spectra: Transportation Surfaces

Key Absorptions
Asphalt: Hydrocarbons,
 aging
Parking lots:  
  featureless, dark
Concrete: carbonates?
Gravel: depends on source 
material

Concretes darken with age
Pavement gets brighter

Roberts and Herold, 2004



Most suitable spectral bands
Top 14 selected based on Bhattacharyya -distance

From: Herold M., Gardner M. and  Roberts D. 2003. Spectral Resolution Requirements for Mapping 
Urban Areas, IEEE Transactions on Geoscience and Remote Sensing, 41, 9, pp. 1907-1919



Land cover mapping
 14 most suitable bands
 26 land cover classes
 22 built up classes
 Inter-class confusion confirms sep. 

analysis
 Spectral limitations:

 # and location of bands
 Narrow vs. broadband

From: Herold M., Gardner M. and  Roberts D. 2003. Spectral 
Resolution Requirements for Mapping Urban Areas, IEEE 
Transactions on Geoscience and Remote Sensing, 41, 9, pp. 
1907-1919

Overall Accuracy



Plant Stress and Physiology
• Plant spectra are a product of multiscale processes

– Leaf
• Chemistry (pigments, water, ligno-cellulose)
• Anatomy (thickness, internal structure)
• Phenology

– Branch
• Density, orientation of leaves (LAI, LAD)
• Exposed branches, litter and soil

– Canopy and Stand
• Crown geometry, leaf/branch density
• Density, percent cover, species composition

• Imaging spectrometry provides detailed information on leaf/
branch scale chemistry, architecture and how they change in 
response to stress

Courtesy of Dar Roberts
UCSB



 

Chl-a

Red-Edge

Leaf water

Leaf water
Leaf Anatomy

Spectroscopy of Leaf Chemistry and Anatomy

Ligno-cellulose
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Visible Reflectance decreases, NIR increases

Transmittance decreases

Absorptance increases

Red edge shifts to longer wavelengths

Roberts et al. 1998: 
Trees

Leaf Aging Effects



Physiological  and Biophysical 
Measures

• Pigments
– Non-linear least squares
– Red Edge

• Stress
– Red edge position

• Quantum efficiency
– PRI

• Moisture
– WI , NDWI , Water Thickness

• Evapotranspiration
– Column Water Vapor

• Biophysical Measures
– LAI, canopy cover, albedo

Courtesy of Dar Roberts
UCSB



Red Edge vs Leaf Age

Aldina heterophylla

Courtesy of Dar Roberts
UCSB



Red Edge and Stress

NDVI: 
NDVI=  (R830-R660)/ (R830+R660)

 Poor response at 20 m

RVSI (Merton and Huntington, 1999)
RVSI = ((R714 + R752)/2) – R733

 

 Sensitive, 4 and 20 m

PRI (Gamon et al., 1992)
PRI = (R531 – R570)/ (R531  + R570)
 Poor response at 20 
m 

Perry et al., 2002

Shelton NE

NASA EOCAP program

Courtesy of Dar Roberts
UCSB



Summary of Indices: Performance for 
Nitrogen Stress

Calculated as the Signal divided by the Noise

High values are good, less than one is bad

N Levels 0, 50, 100, 150, 200 kg/ha 

Courtesy of Dar Roberts
UCSB



additional forest 
information



Other applications



Mineral end-members?





non-photosynthetic vegetation (litter)

Applications







grain size effects on 
snow reflectance

Snow Applications
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Gallus gallus
(common chicken)
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Summary

• Imaging spectrometry has broad application 
for many disciplines

• The strength of imaging spectrometry is in 
its direct link to physical processes and 
flexibility

• Imaging spectrometry complements broad 
band systems, does not compete

• Examples shown here, only reveal a small 
part of the established potential

Courtesy of Dar Roberts
UCSB



Imaging spectroscopy data sources
data availability for imaging spectroscopy?

• mainly ground and                                                       
airborne sensors



• data availability for imaging spectroscopy?

• mainly ground and airborne sensors





Methods



What is mixture modeling?

• hard vs. soft (fuzzy) information extraction

• classification requires that each pixel be given a 
hard, unambiguous label especially in 
homogeneous areas (H-resolution)

• in other instances, especially when pixel size is 
larger than homogenous objects (L-resolution) 
the land cover is in essence mixture of different 
land covers 

• The purpose of mixture modeling is to estimate 
the proportion of individual elements (land cover 
objects) within individual pixels and it is an L-
resolution problem.



• Classification - categorical estimation

• cookie-cutter model

• Mixture modeling - continuous estimation

• blender model

• there is improved technology and imagery

• there is increased demand for information such 
as secondary labels for vegetation

• soft (fuzzy) output maps

What is mixture modeling?



Spectral Unmixing

Unmixing accomplished via linear estimation, 
Supervised learning, or automated approaches



• linear vs. non-linear

• simple vs. probability-based

• supervised vs. unsupervised

• empirical vs. deterministic

Kinds of mixture modeling

Pixel (x,y) as spectral 
measurement
Band 1 52 DN
Band 2 99 DN
Band 3 13 DN
Band 4 25 DN

Pixel (x,y) as fraction 
measurement

Endmember A 0.4
Endmember B 0.6

data

transformation



• It can be assumed that the magnitude of a single 
photon reflected from the Earth’s surface into 
the sensor field-of-view (pixel) is describable in 
terms of a simple linear model:

ri = reflectance in ith spectral band

aij = reflectance of jth end-member in ith spectral band

fj = proportion of end-member j

ei = difference between observed and modeled reflectance (error)

Linear mixture modeling

we are interested
in the inverse of

this equation





• In order for the components (r) to be computed, 
the number of end-members must be less than the 
number of spectral bands

• This model simply expresses the fact that the 
integrated signal (r) received at sensor in a given 
band will be a linear sum of all individual signals from 
individual land cover types

• The constraint specifies that the individual fractions 
must take values between 0 and 100 percent and 
that the fractions for any given mixed pixel must 
sum  to 100 percent or less.

Linear mixture modeling



• End-member refers to spectral phenomena where 
the pure form of the category of interest (green 
leaves, soils, shade, water etc...)

• End-members are spectral only, and do not 
represent materials although spectra may represent 
materials

• End-members in an image refer to pixels (or 
locations) whose reflectance value corresponds to 
the reflectance value of the pure spectral sample

• These end-members correspond to the materials 
with spectra that combine linearly to produce all of 
the spectra in the image

What are end-members?



• spectroscopic library matching

• make own in-situ observations 

• NASA-JPL spectral library

http://speclib.jpl.nasa.gov/

• USGS spectral library

http://speclab.cr.usgs.gov/ spectral.lib04/spectral-lib04.html

• empirical approach

• extract from imagery at hand

• extract from another imagery 

• probabilistic approach

How do we obtain end-members?



How do we obtain end-members?How do we obtain end-members?



How do we obtain end-members?



• spectroscopic library matching

• make own in-situ observations 

• NASA-JPL spectral library

http://speclib.jpl.nasa.gov/

• USGS spectral library

http://speclab.cr.usgs.gov/ spectral.lib04/spectral-lib04.html

• empirical approach

• extract from imagery at hand

• extract from another imagery 

• probabilistic approach

How do we obtain end-members?



• Pixel Purity Index (PPI)

• Sometimes, it is difficult to locate end-
members because only a few pixels contain 
pure samples

• PPI is a rigorous mathematical method to 
repeatedly project n-dimensional scatterplots 
to 2-D space and marking the extreme pixels

• Each time spectral data is projected, we can 
note the the most extreme (pure) pixels and 
simply keep track of the number of times a 
pixel is considered extreme to make PPI image

How do we obtain end-members?



• MNF

• used to reduce dimensionality and therefore 
noise in the image data set

• it is a cascaded PCA analysis approach

• the first de-correlates  and scales noise in the 
data

• the second creates MNF eigen images (i.e. PCA)

• use these images in PPI analysis

How do we obtain end-members?





Boston image number of pure 
pixels after 10,000 iterations



Boston 453 as 
RGB

Boston PPI image



• bad (non-pure) end-member choice

• end-member variability

• fraction overflow

• omitted mixture component (missing important 
land cover category)

• data may not be able to describe the mixtures

• reflected photon into the sensor pixel has 
multiple interactions wit other surface objects

• non-linear relationships

Issues in mixture modeling



probabilistic approach

• Linear mixture models assume that the end-member 
spectra are known exactly for each pixel

• In reality, however, reflectance is likely to vary across 
space and time, even for a narrowly defined end-
members

• So, rather than define end-members with a single 
spectrum, it is possible to define end-members as a set of 
spectra which represent the full range of potential 
variability

• Thus, end-member fractions are not estimated as single 
values, but rather as a probability distribution that can be 
used to construct confidence intervals appropriate to the 
desired application



Lobell and Asner (2004)

probabilistic approach



Lobell and Asner (2004)

probabilistic approach



mean
image

standard 
deviation

image

Lobell and Asner (2004)

probabilistic approach



Multi-endmember spectral mixture 
analysis (MESMA)

• Given the variation in the number of endmembers 
needed for optimal unmixing, the use of a fixed suite of 
endmembers can cause large errors in the estimated 
fractional cover

• MESMA assumes that although an image contains a large 
number of spectrally distinct components, individual 
pixels contain a limited subset of these

• MESMA decomposes each pixel using different 
combinations of possible endmembers, allowing a large 
number of endmembers to be utilized across a scene 
and the optimization of endmembers for individual 
pixels.

Roberts et al (1998)



Fraction images of two 
different salt marshes 

found in the San Francisco 
Bay area developed by 
applying the MESMA 

method to airborne AVIRIS 
images

Li et al (2005)



Spectral Angle Mapper (SAM)

• Spectral angle mapping is based on the well-known 
coefficient of proportional similarity, or cosine-theta  
approach

• This index defines that the degree of similarity between 
two objects (spectra in this case) may be evaluated in 
relation to the proportions of their presence

• For any two spectra, the index is determined from 
cosine theta which is merely the cosine of the angle 
between the two row vectors as situated in n-
dimensional space

• The index value of 0 means the two spectra are 
completely dissimilar and index value of  +1 means the 
two spectra coincide



Spectral Angle Mapper (SAM)

ri - reference pixel vector
pi - any other image pixel vector


