Hyperspectral remote sensing

Theory Applications and Methods

Domains of remote sensing

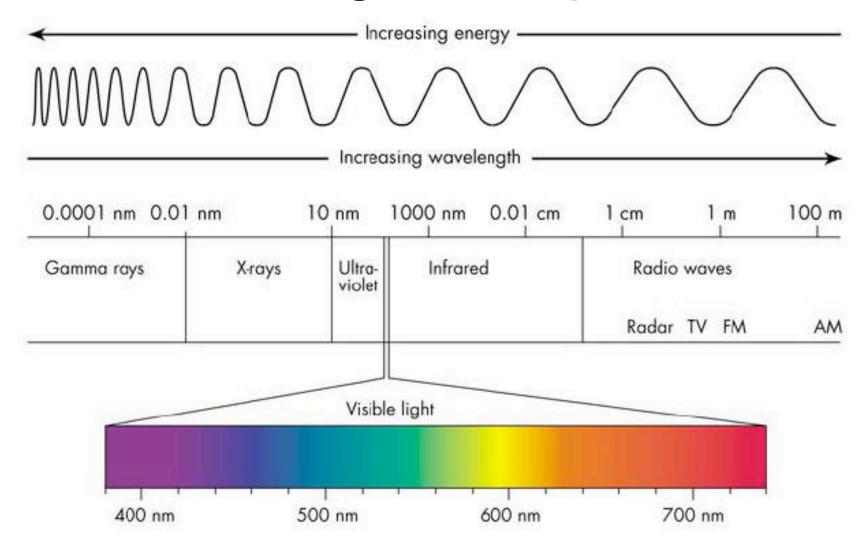
- Spatial domain
- Spectral domain
- Temporal domain
- Angular domain
- Polarization domain

Spectral domain

- Spectral location of "bands"
 - -i.e. visible, IR, SWIR
- Band width
 - -how wide are spectral positions?

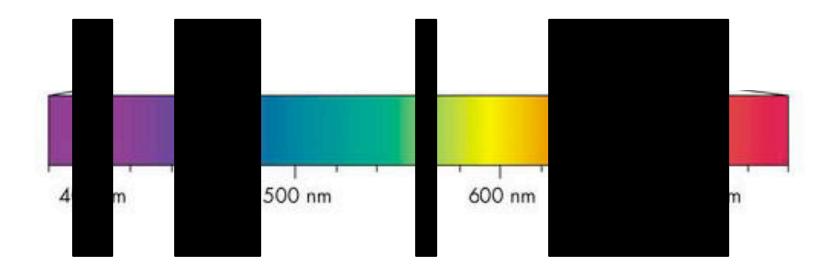
- Number and frequency of bands
 - -how many and at what frequency?

Electromagnetic Spectrum



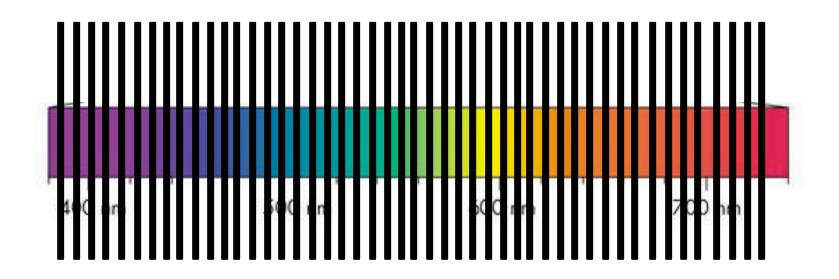
The Sun produces a *continuous spectrum* of electromagnetic radiation ranging from very short, extremely high frequency gamma and cosmic waves to long, very low frequency radio waves

Spectral frequency (how often do you sample the spectrum)



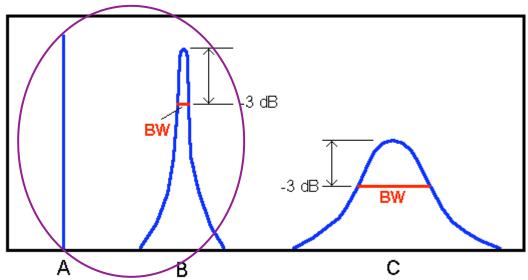
broadband example

Spectral frequency (how often do you sample the spectrum)

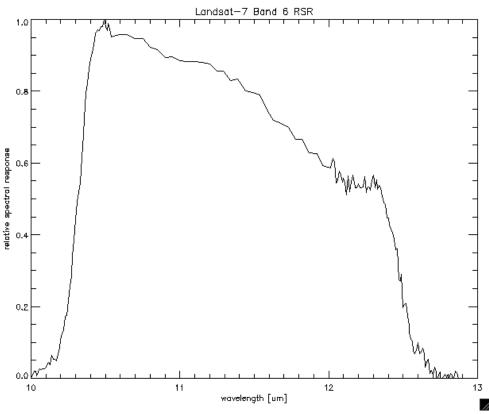


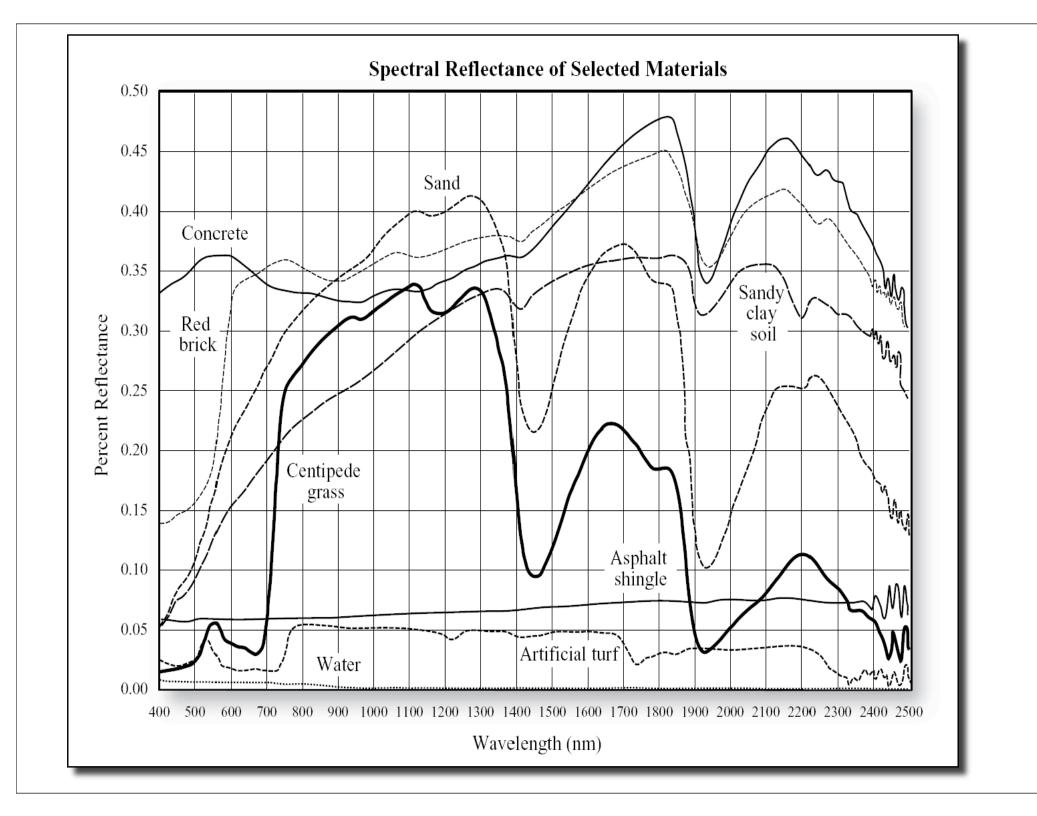
hyperspectral example (hyper [many] - spectral)

Spectral bandwidth

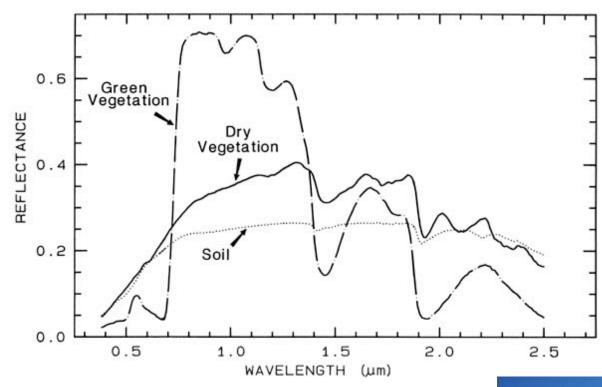


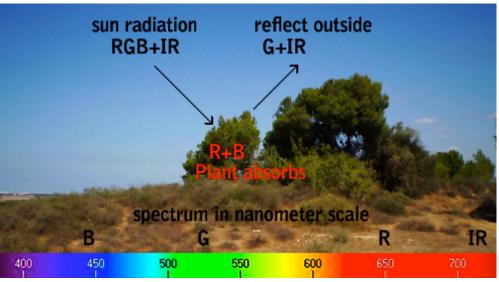
Landsat Band 6 spectral response



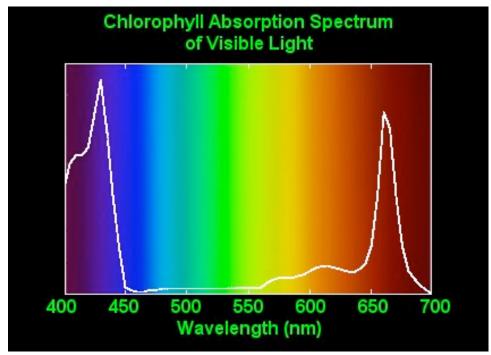


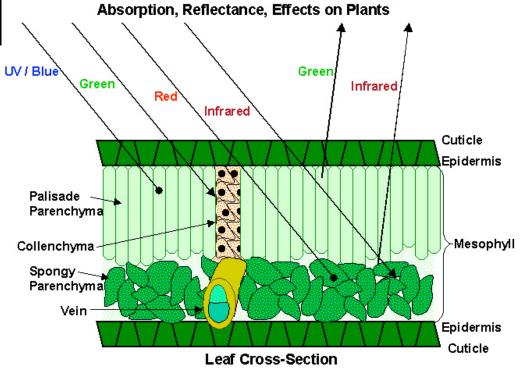
Dry vs. Green vegetation

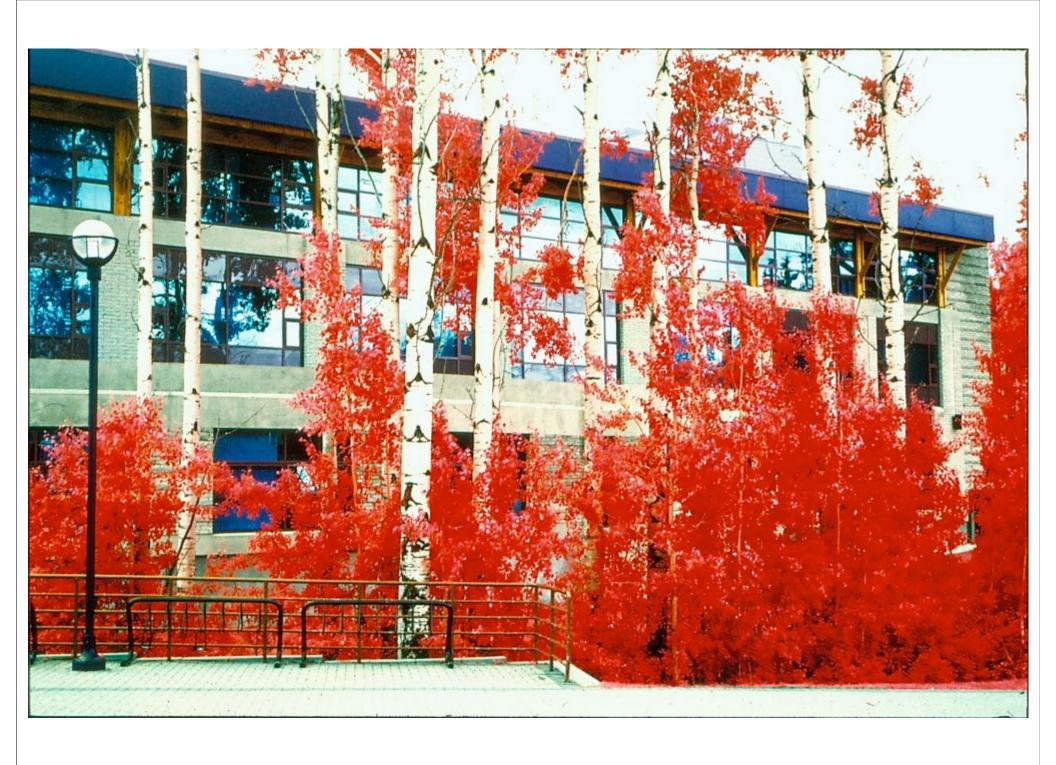


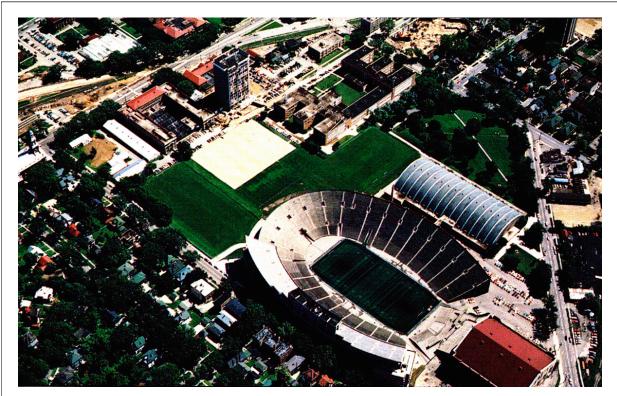


Leaf reflectance and absorption



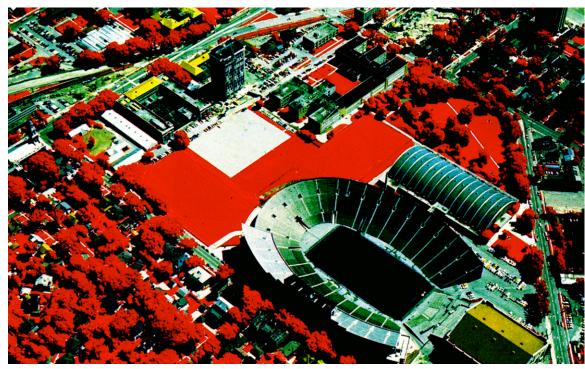




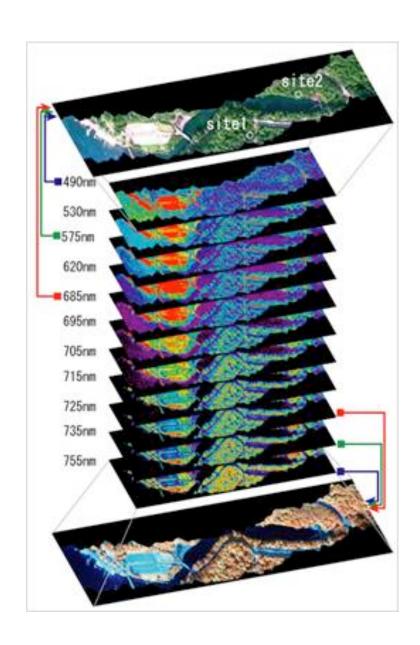


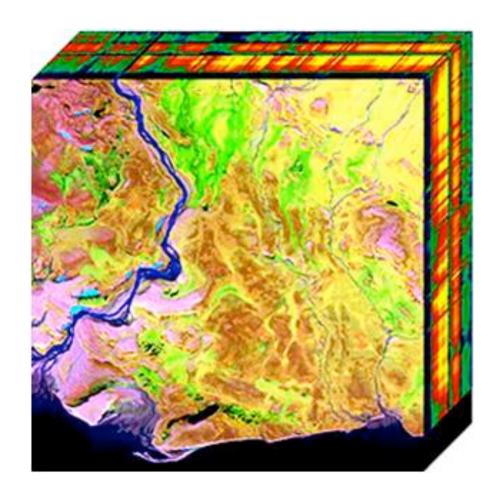
color aerial photo visible spectrum

color aerial photo NIR spectrum



Spectral frequency





hyperspectral cube

Imaging spectroscopy

what is imaging spectroscopy?

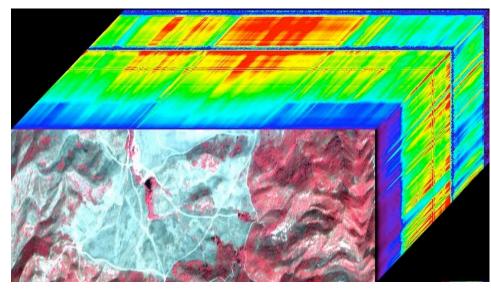
• systems with **narrow spectral bands** used to obtain a continuous spectrum of electromagnetic radiation

complete characterization of spectral properties

 more detail – reveals surface chemistry, physical properties and geometry

 new capabilities for analysis

spectral libraries

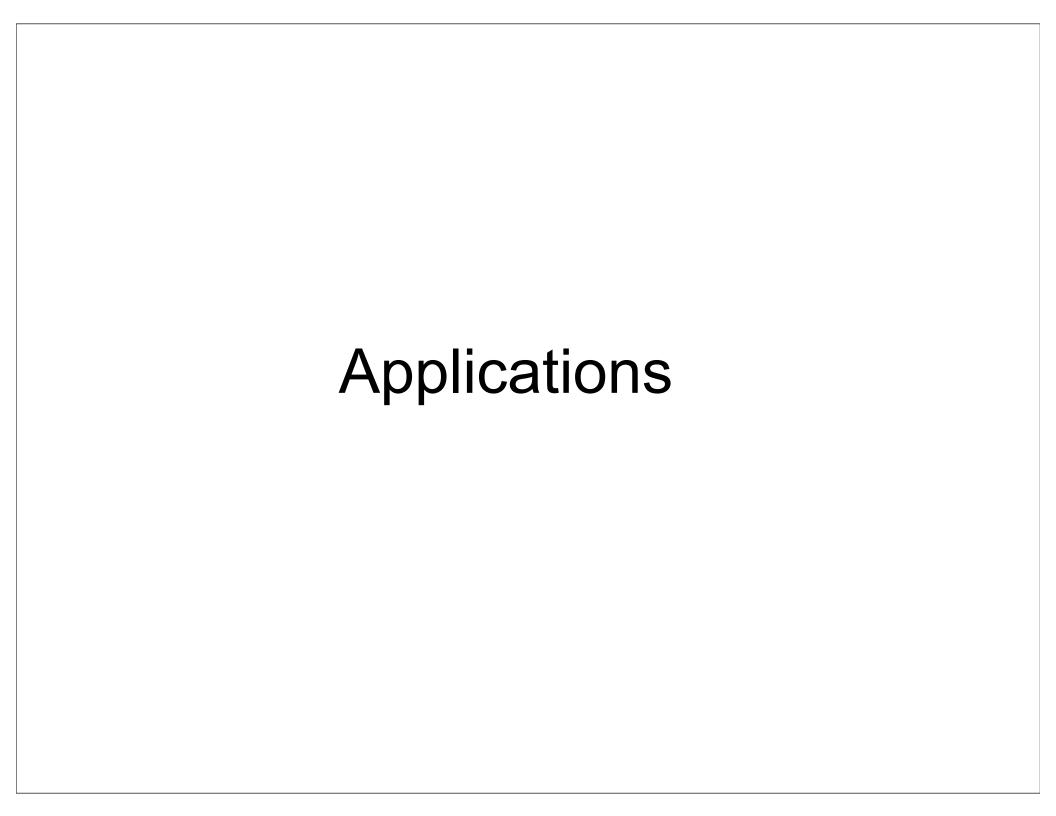


Motivation

 Imaging spectrometry provides fundamental spectral information that is not accessible to broad band systems

 Imaging spectrometry provides fundamental measurements that add value to broad band systems

 Imaging spectrometry provides flexibility, enabling the simultaneous solution of numerous remote sensing problems



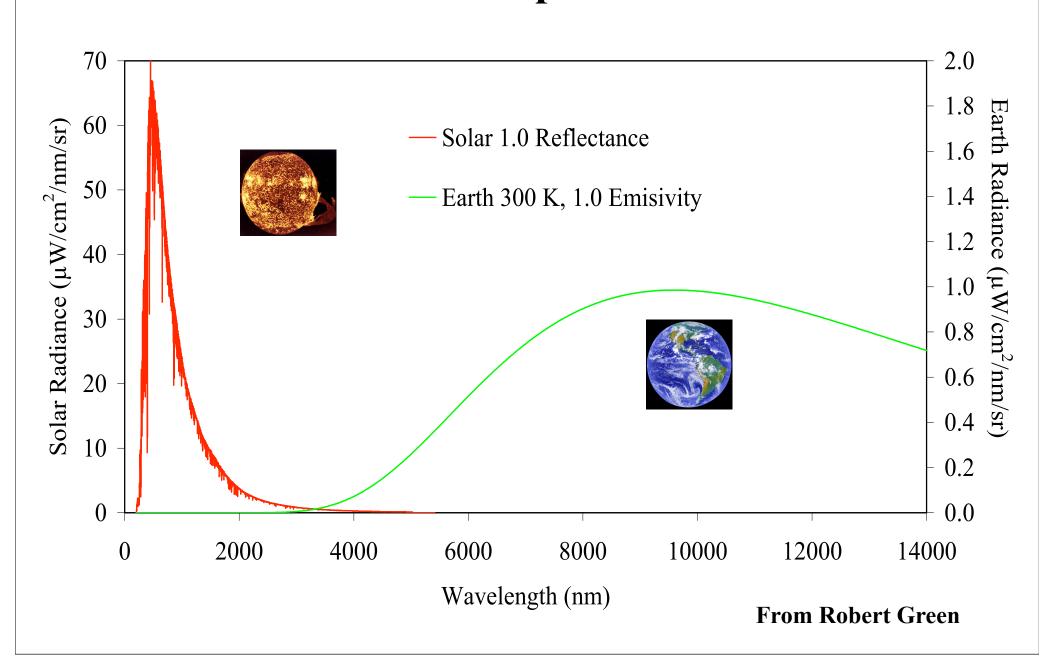
Atmospheres

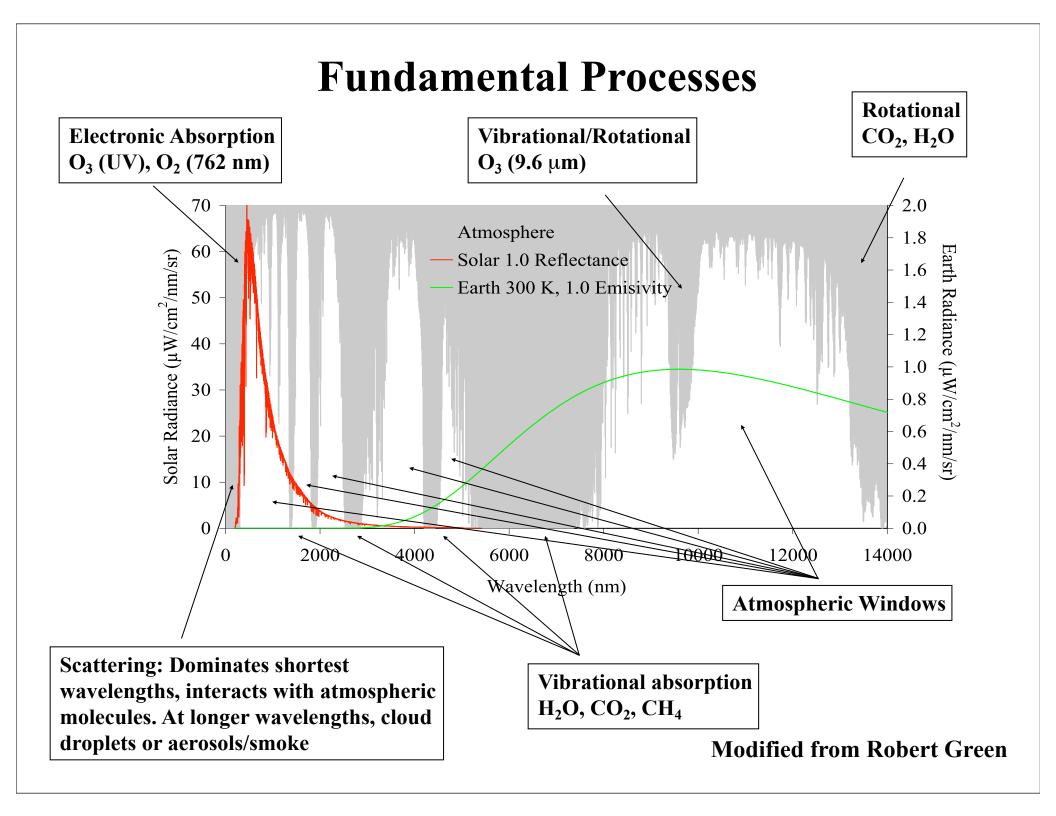
• The atmosphere imposes its signature upon all remote sensing measurements

 The atmosphere must be characterized to solve for surface reflectance

 Various atmospheric constituents can be mapped using an imaging spectrometer

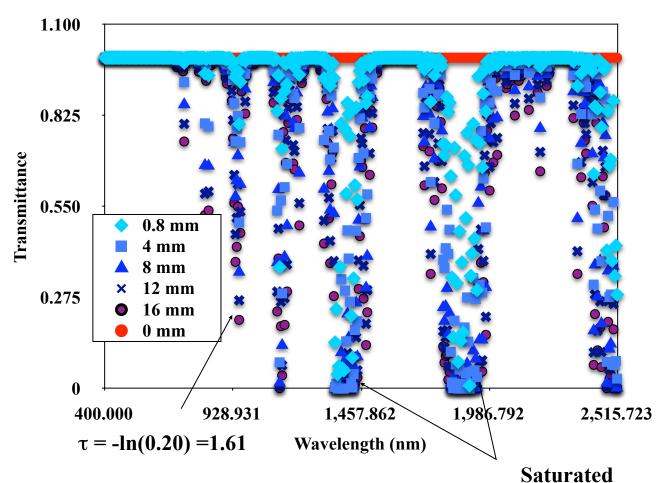
Emission Spectra of the Sun and Earth with no Atmosphere





Impact of Water Vapor

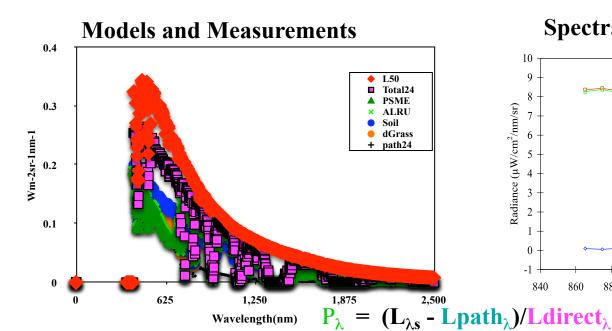
 Water vapor is unique in that it varies considerably over space and time



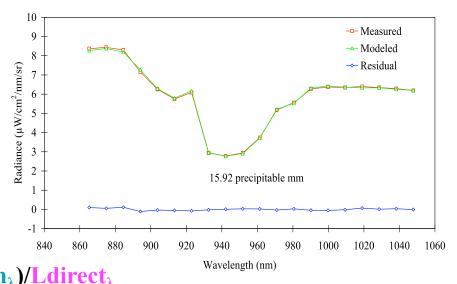
Courtesy of Dar Roberts UCSB

Modtran: March 21, 100 km elev, 1 atm

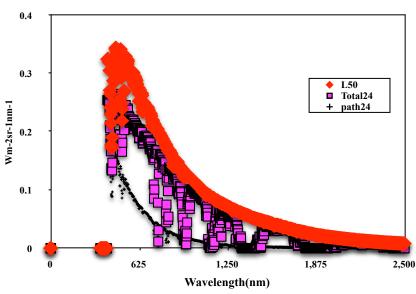
Radiative Transfer Solution for Reflectance



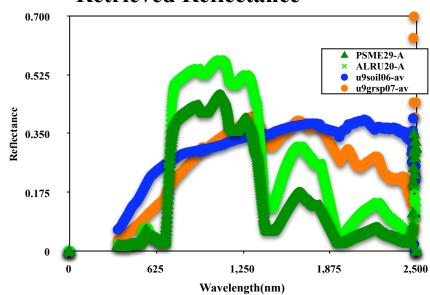
Spectral Fit in Water Vapor Band



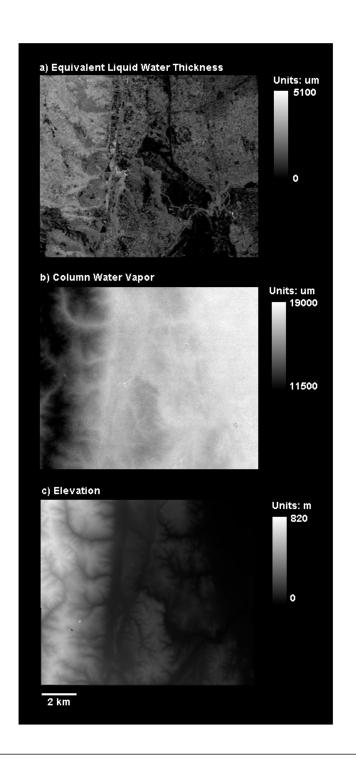
Modeled Radiance



Retrieved Reflectance



Courtesy of Dar Roberts
UCSB

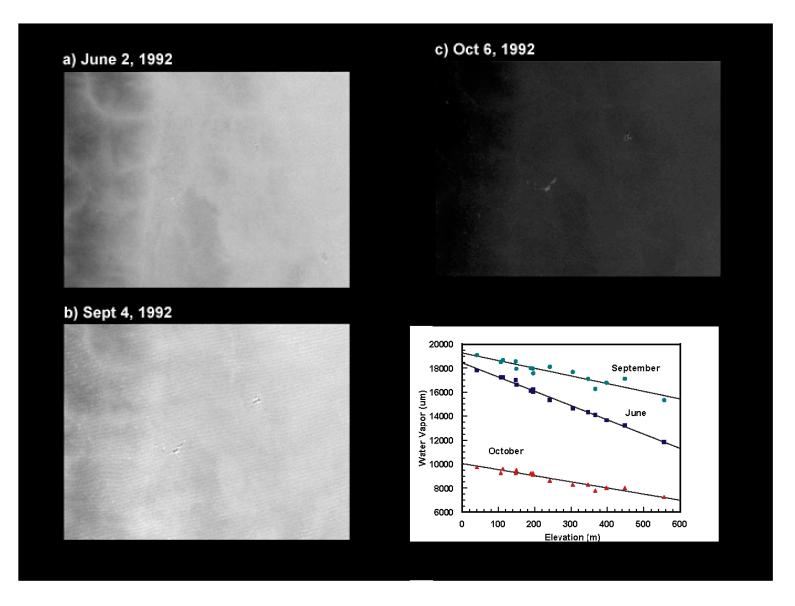


Reflectance Product: Water vapor and Liquid water

- Liquid water
 - -Measures water in leaves
 - -Primarily structural
- Water vapor
 - Inversely related to topography
 - -Varies temporally
 - -Related to ET

Roberts et al., 1997, RSE

Temporal Changes in Water Vapor

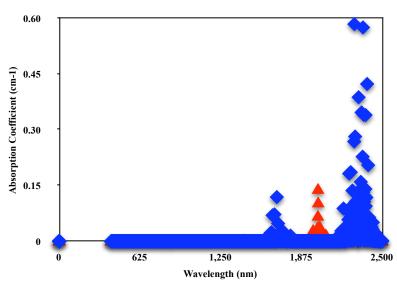


Roberts et al., 1997, RSE

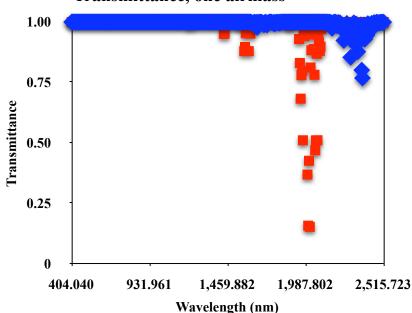
Why Map Methane?

- Methane is a strong greenhouse gas with large absorption coefficients at ~2300 nm and 1700 nm
- Methane is a far stronger absorber than Carbon Dioxide but has a lower impact because of a much lower concentration in the atmosphere
 - $CO_2: \sim 370 \text{ ppm}$
 - CH₄: ~ 1.9 ppm

Absorption Coefficients

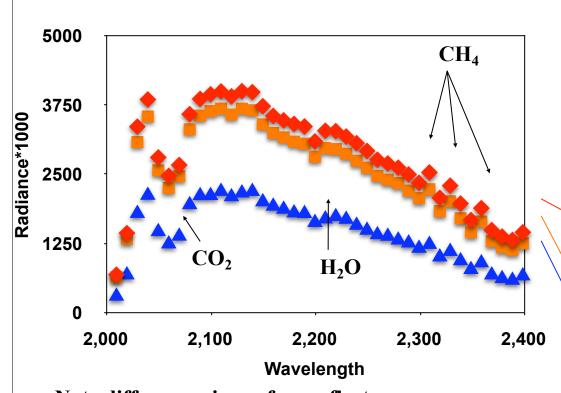


Transmittance, one airmass



Courtesy of Dar Roberts
UCSB

AVIRIS Measures of Methane 6-14-2001



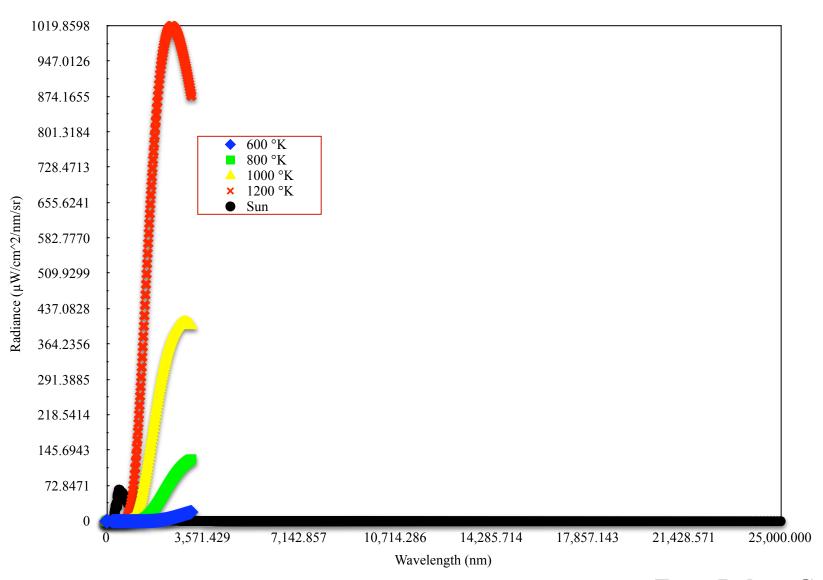
Note differences in surface reflectance Note atmospheric background methane is prominent

Courtesy of Dar Roberts UCSB

Fire Temperature Retrievals

- The primary focus on fire temperature retrieval has been in the thermal
- Thermal systems tend to saturate at high fire temperatures
- In imaging spectrometer, similar to AVIRIS provides a wide range of temperature retrievals
 - -500K to over 1500K
 - The system cannot saturate because there is always a signal at shorter wavelengths

Planck Functions and The Solar Irradiance Spectrum

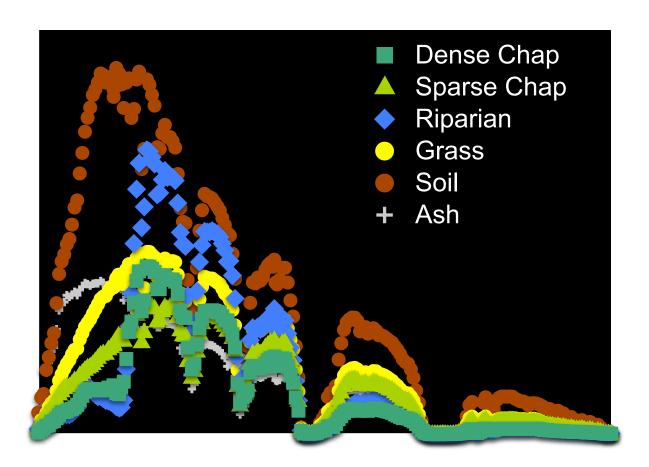


From Robert Green

Methods

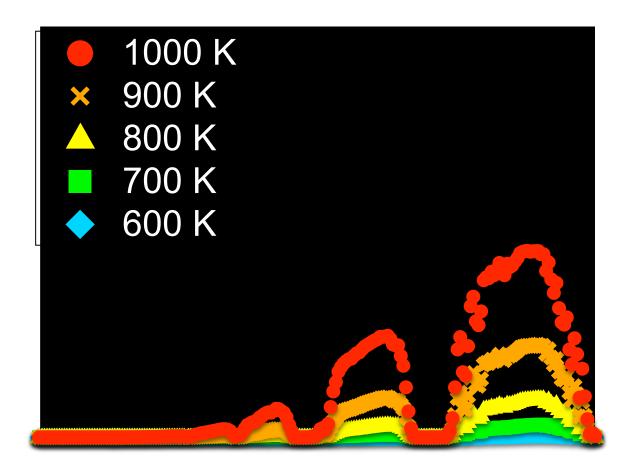
- Multiple Endmember Spectral Mixture Analysis (MESMA) was used to model each pixel in the AVIRIS image
- Each pixel was modeled as a combination of:
 - 1 emitted thermal radiance endmember
 - 1 reflected solar radiance endmember
 - Shade (zero radiance)
- Emitted thermal radiance endmembers were modeled using MODTRAN
 - Ranged from 400-1500 K (260°-2240°F) at increments of 10 K
- Reflected solar radiance endmembers were selected from the image using Endmember Average RMSE (EAR)
 - Six possible endmembers: riparian, dense chaparral, sparse chaparral/ sagescrub, grass, soil and ash

Reflected Solar Radiance Endmembers

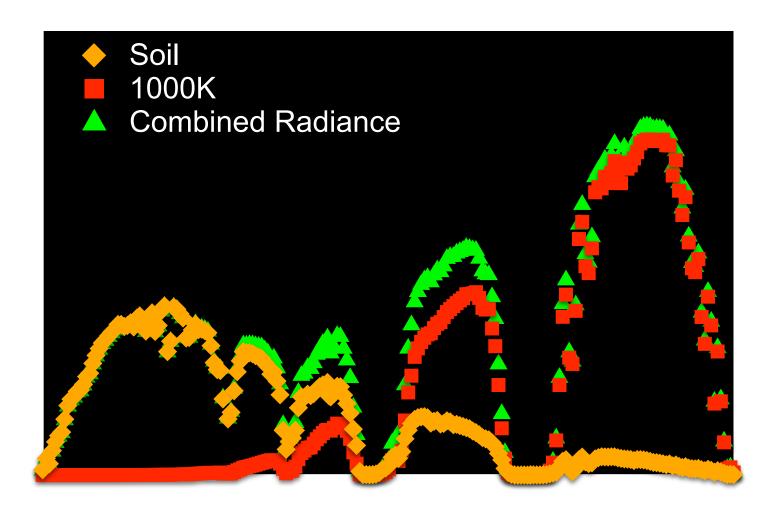


Dennison et al., 2005

Subset of Emitted Thermal Radiance Endmembers

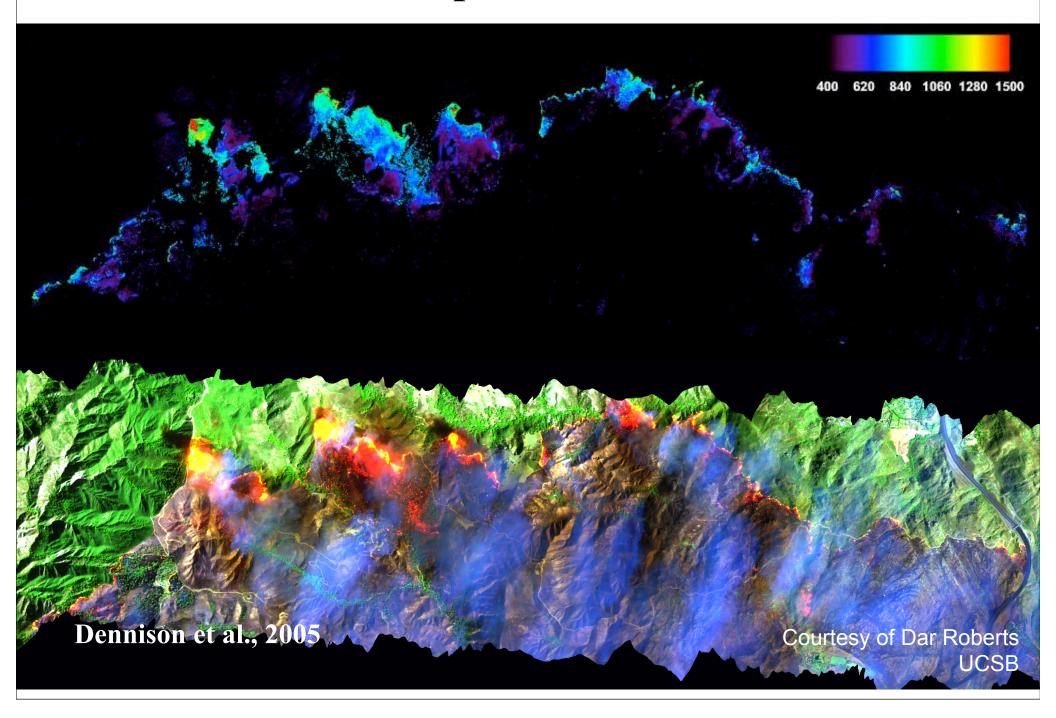


Example: Mixed Radiance

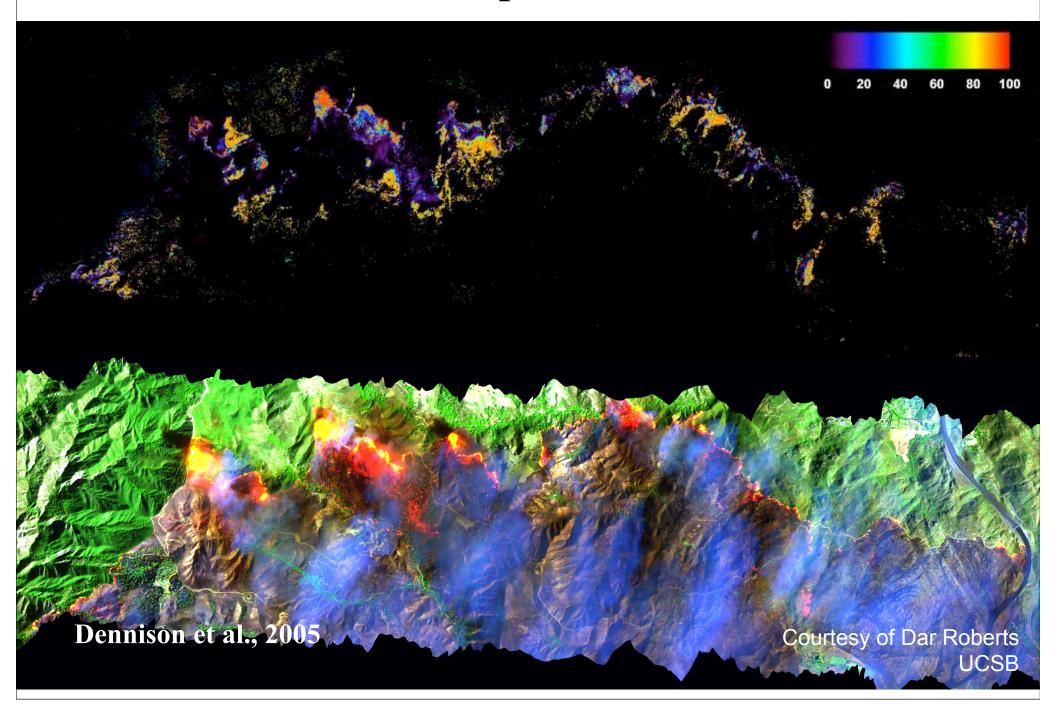


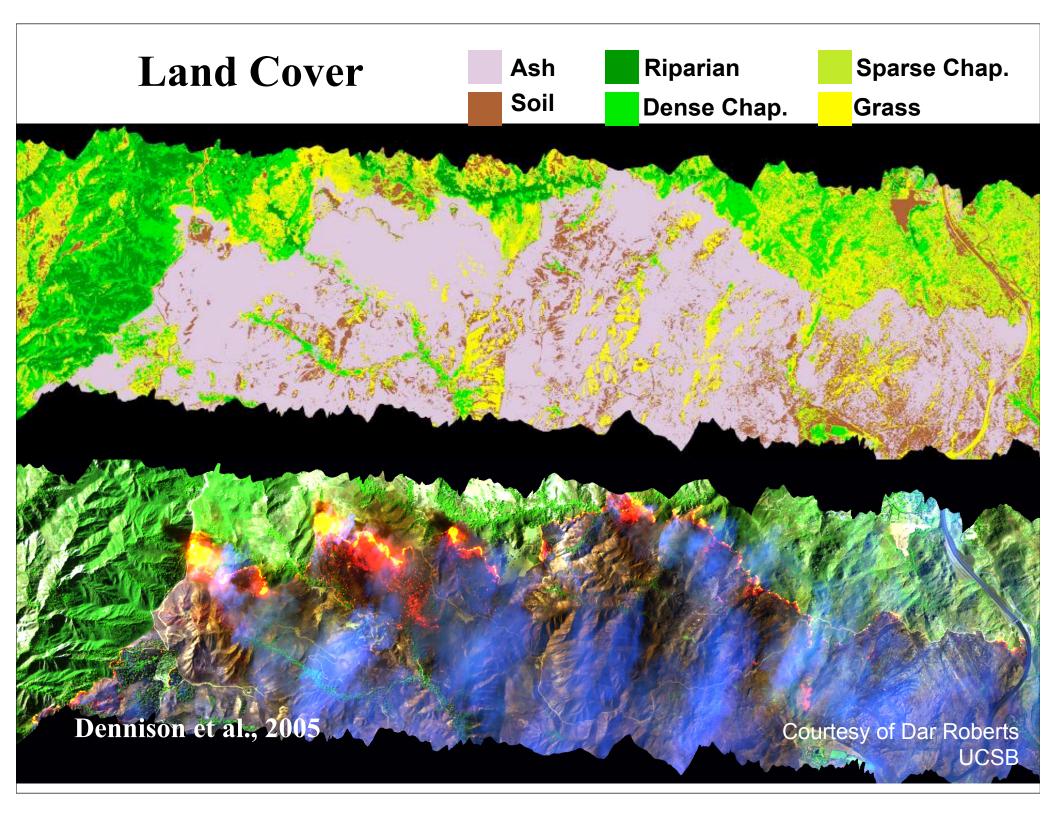
Dennison et al., 2005

Retrieved Temperature Endmembers



Retrieved Temperature Fraction





Motivation for Urban Environments

- Urban Environments are Challenging
 - -The diversity of materials is high
 - The scale at which surfaces are homogeneous is typically below the spatial resolution of spaceborne and airborne sensors
- New Remote Sensing Technologies need to be Evaluated
 - -Hyperspectral: AVIRIS, Hyperion, HYMAP
 - -Hyperspatial: IKONOS Panchromatic
 - -LIDAR: Fine vertical resolution
 - -SAR: Interferometry

AVIRIS - Santa Barbara, California

Oct 11, 1999 low-altitude data - 4 meter GIFOV

Red 1684 nm Green 1106 nm Blue 675 nm

Courtesy of Dar Roberts UCSB

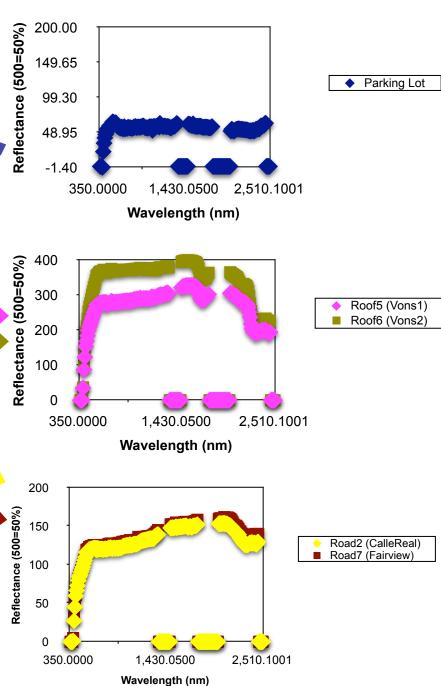
Each pixel is a spectrum

Potential for library development is large

AVIRIS 991011

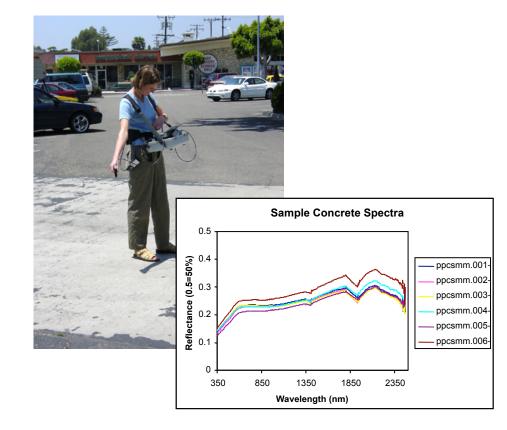
Courtesy of Dar Roberts UCSB

Red = 1684 nm Green = 1106 nm Blue = 675 nm



Field Spectra Summary

- Over 6,500 urban field spectra were collected throughout Santa Barbara in May & June 2001
- Field spectra were averaged in sets of 5 and labeled appropriately in building the urban spectral library
- The resulting urban spectral library includes:
 - 499 roof spectra
 - 179 road spectra
 - 66 sidewalk spectra
 - 56 parking lot spectra
 - 40 road paint spectra
 - 37 vegetation spectra
 - 47 non-photosynthetic vegetation spectra
 - (ie. Landscaping bark, dead wood)
 - 27 tennis court spectra
 - 88 bare soil and beach spectra
 - 50 miscellaneous other urban spectra



Courtesy of Dar Roberts
UCSB

Example Spectra: Roofs

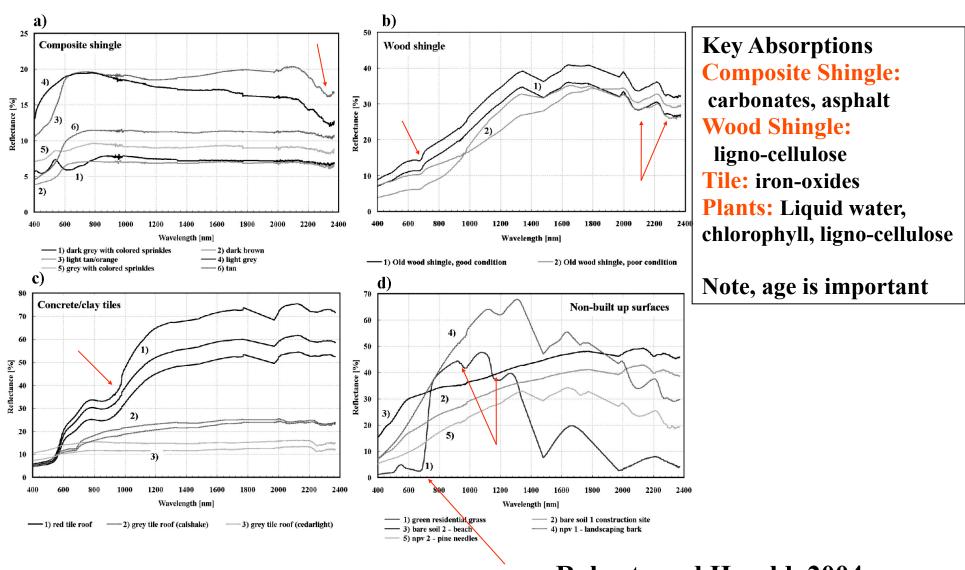


Figure 5

Roberts and Herold, 2004

Example Spectra: Transportation Surfaces

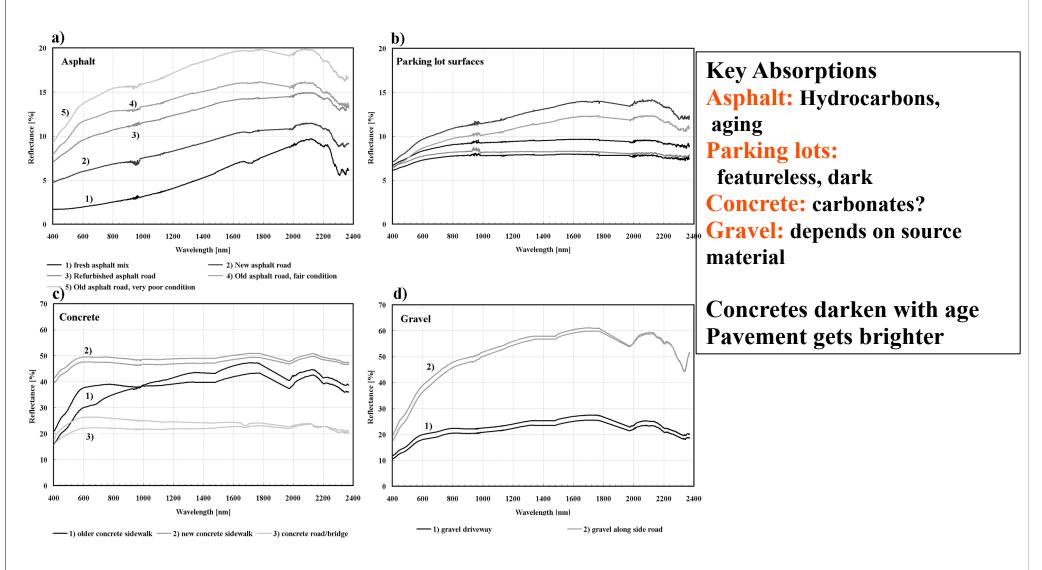
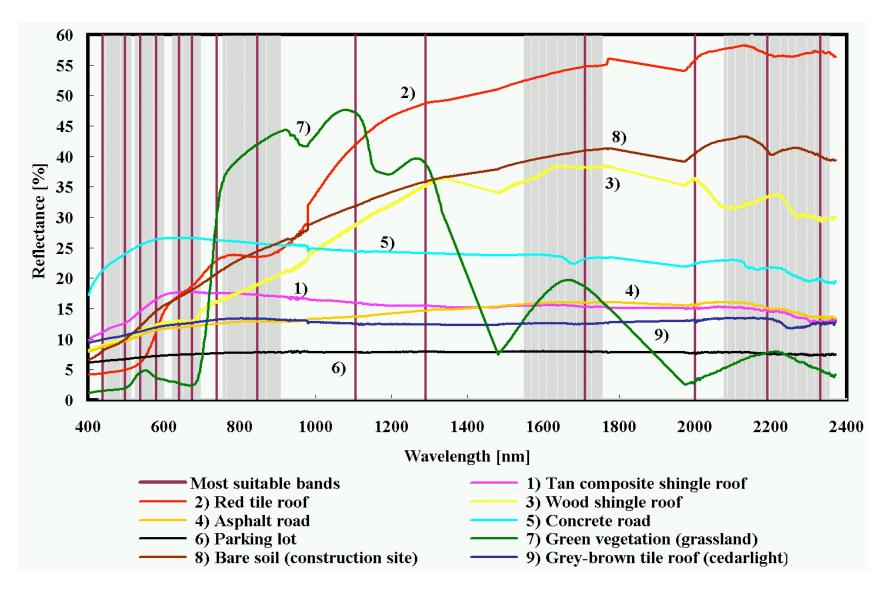


Figure 6

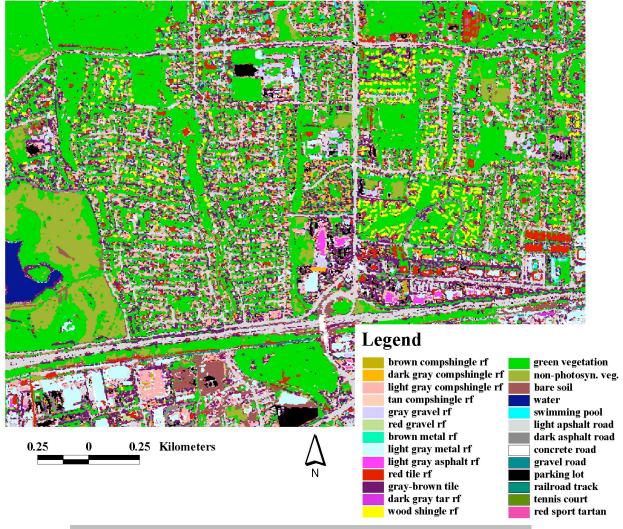
Roberts and Herold, 2004

Most suitable spectral bands Top 14 selected based on Bhattacharyya -distance



From: Herold M., Gardner M. and Roberts D. 2003. Spectral Resolution Requirements for Mapping Urban Areas, IEEE Transactions on Geoscience and Remote Sensing, 41, 9, pp. 1907-1919

Land cover mapping



- 14 most suitable bands
- 26 land cover classes
- 22 built up classes
- Inter-class confusion confirms sep. analysis
- Spectral limitations:
 - # and location of bands
 - Narrow vs. broadband

Overall Accuracy

	Mean	Карра	Area weighted	Built classes
	accuracy	coefficient	accuracy	accuracy
IKONOS (4 bands)	61.8 %	60.2 %	66.6 %	37.7 %
Landsat TM (6 bands)	68.9 %	67.7 %	75.8 %	53.9 %
AVIRIS (14 bands)	73.5 %	72.5 %	82.0 %	66.6 %

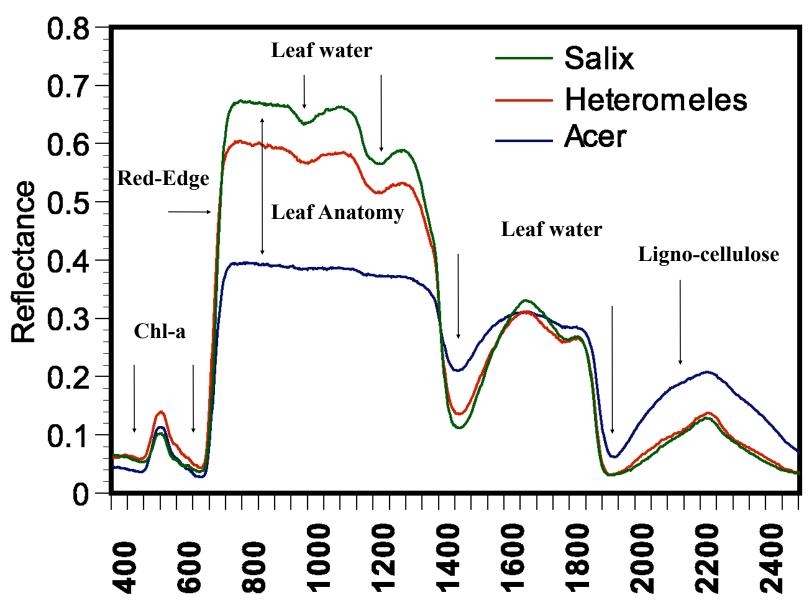
From: Herold M., Gardner M. and Roberts D. 2003. Spectral Resolution Requirements for Mapping Urban Areas, IEEE Transactions on Geoscience and Remote Sensing, 41, 9, pp. 1907-1919

Plant Stress and Physiology

- Plant spectra are a product of multiscale processes
 - Leaf
 - Chemistry (pigments, water, ligno-cellulose)
 - Anatomy (thickness, internal structure)
 - Phenology
 - Branch
 - Density, orientation of leaves (LAI, LAD)
 - Exposed branches, litter and soil
 - Canopy and Stand
 - Crown geometry, leaf/branch density
 - Density, percent cover, species composition
- Imaging spectrometry provides detailed information on leaf/ branch scale chemistry, architecture and how they change in response to stress

Courtesy of Dar Roberts

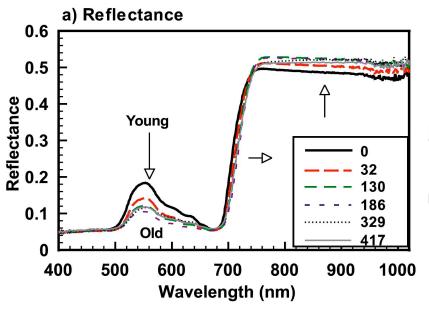
Spectroscopy of Leaf Chemistry and Anatomy

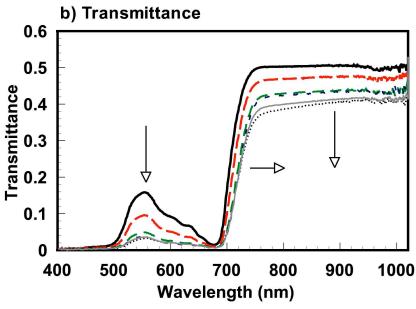


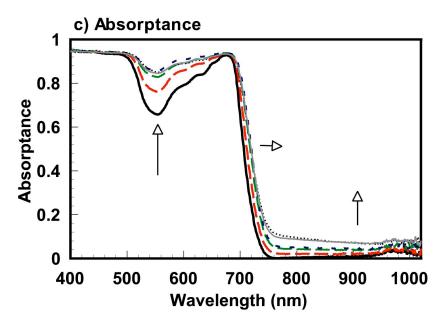
Wavelength (nm)

Courtesy of Dar Roberts UCSB

Leaf Aging Effects







Visible Reflectance decreases, NIR increases

Transmittance decreases

Absorptance increases

Red edge shifts to longer wavelengths

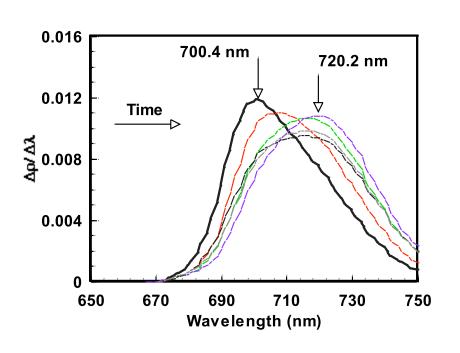
Roberts et al. 1998: Trees

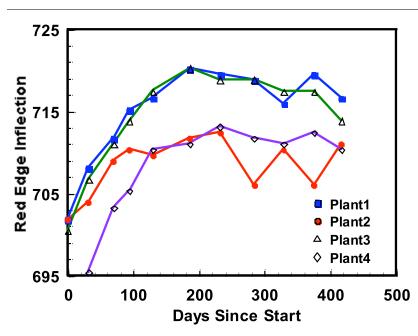
Physiological and Biophysical Measures

- Pigments
 - Non-linear least squares
 - Red Edge
- Stress
 - Red edge position
- Quantum efficiency
 - PRI
- Moisture
 - WI, NDWI, Water Thickness
- Evapotranspiration
 - Column Water Vapor
- Biophysical Measures
 - LAI, canopy cover, albedo

Red Edge vs Leaf Age

Aldina heterophylla





Red Edge and Stress

NDVI:

NDVI= $(R_{830}-R_{660})/(R_{830}+R_{660})$

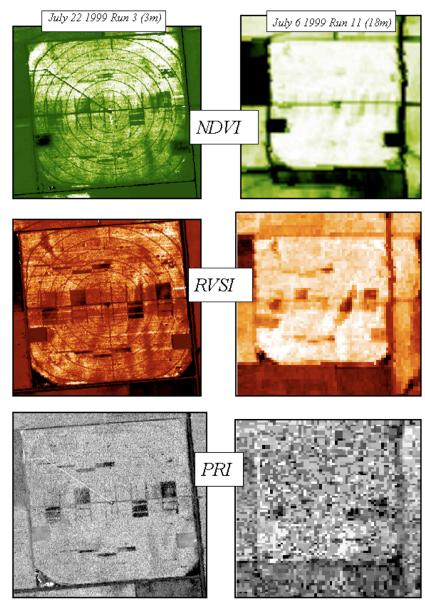
Poor response at 20 m

RVSI (Merton and Huntington, 1999) $RVSI = ((R_{714} + R_{752})/2) - R_{733}$

Sensitive, 4 and 20 m

 $\begin{array}{c} \textbf{PRI} \;\; \textbf{(Gamon et al., 1992)} \\ \textbf{PRI} = (R_{531} - R_{570}) / \; (R_{531} \;\; + R_{570}) \\ \textbf{Poor response at 20} \\ \textbf{m} \end{array}$

Perry et al., 2002
Shelton NE
NASA EOCAP program



Courtesy of Dar Roberts
UCSB

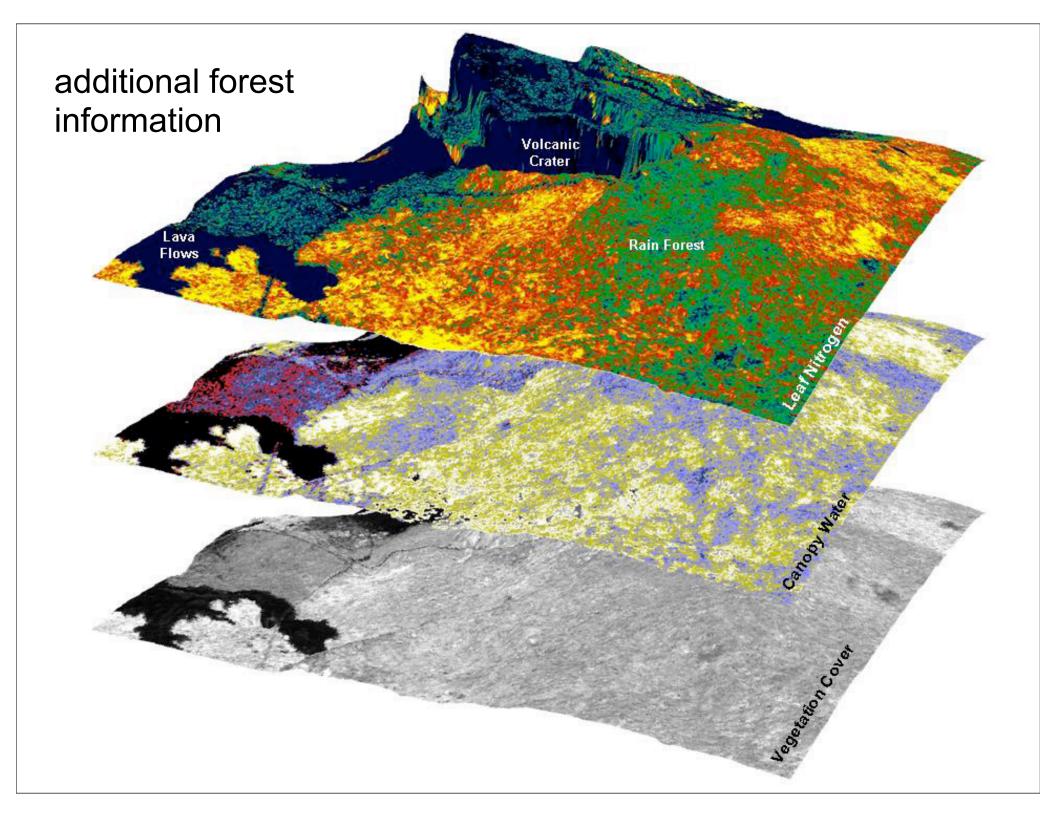
Summary of Indices: Performance for Nitrogen Stress

Table 7. Ratios of Measured Index Value over Uncertainty¹

Index		1 nm	2 nm		
	Visibility	Spectral	Spectral		Reflectance
	Uncertainty	Shift	Shift	View Angles	Retrieval
PRI	1.6	0.7	0.4	6.6	1.4
NDVI	0.5	14.7	7.2	0.7	1.5
VI	0.4	13.5	6.6	0.7	1.3
SAVI	2.2	74.1	34.9	1.5	1.6
RVSI	39.8	3.9	1.9	5.7	15.5
GVI	3.7	135.5	89.3	1.3	1.7
Bright	3.7	60.2	39.6	0.4	1.6
Wet	15.4	29.8	18.1	0.6	2.6
NDWI	8.3	83.3	41.3	2.0	0.4
WI	5.9	26.5	12.0	2.1	0.9
Inflection.Pt	11.9	3.5	1.8	5.3	1.7
Liquid Water					
Thickness	8.2	-	-	2.0	0.7

N Levels 0, 50, 100, 150, 200 kg/ha

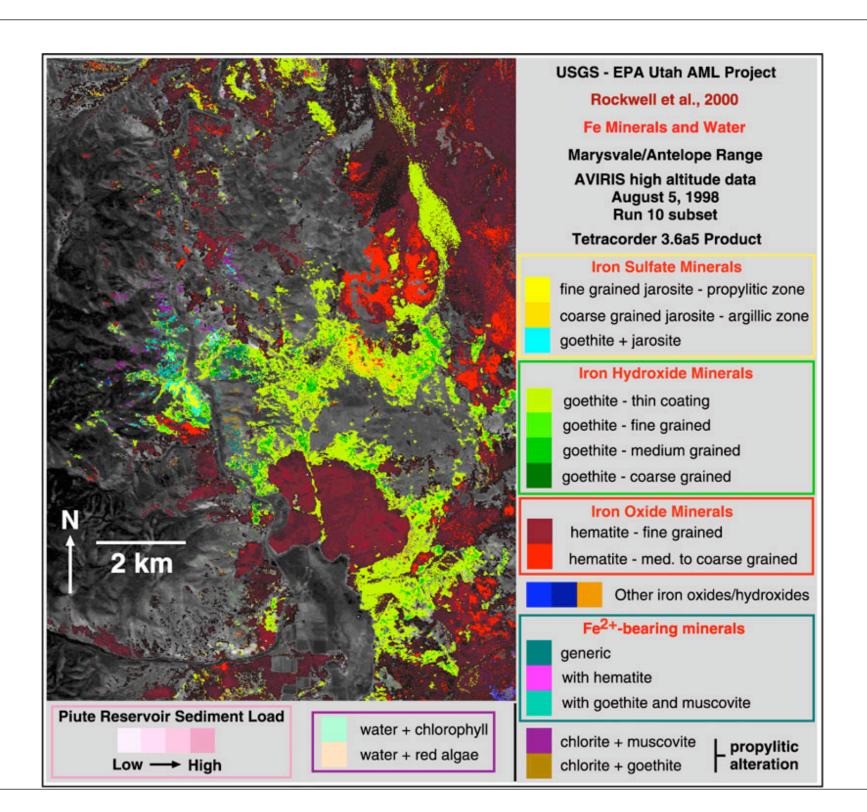
Calculated as the Signal divided by the Noise High values are good, less than one is bad



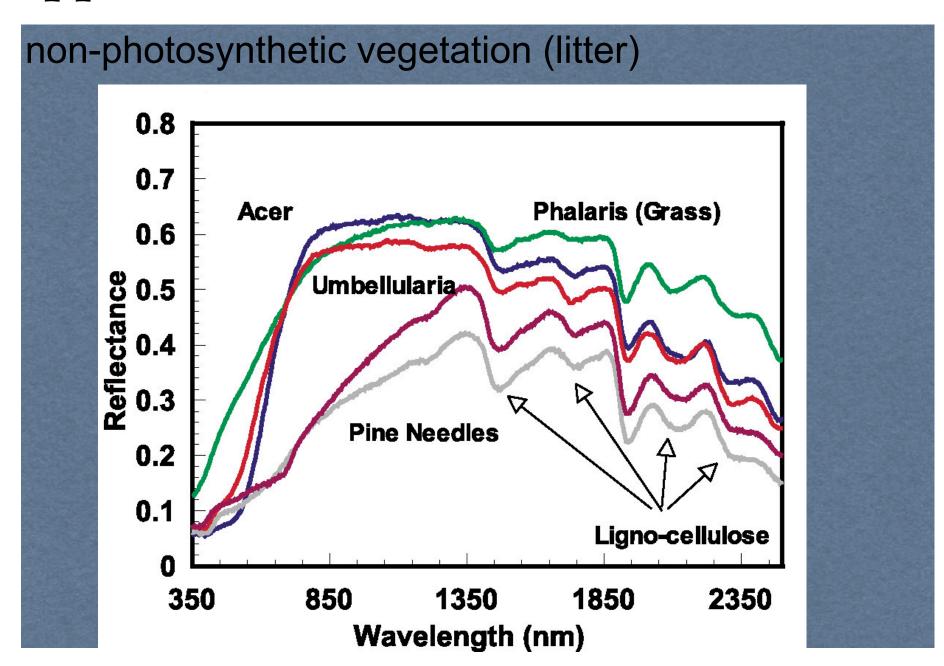
Other applications

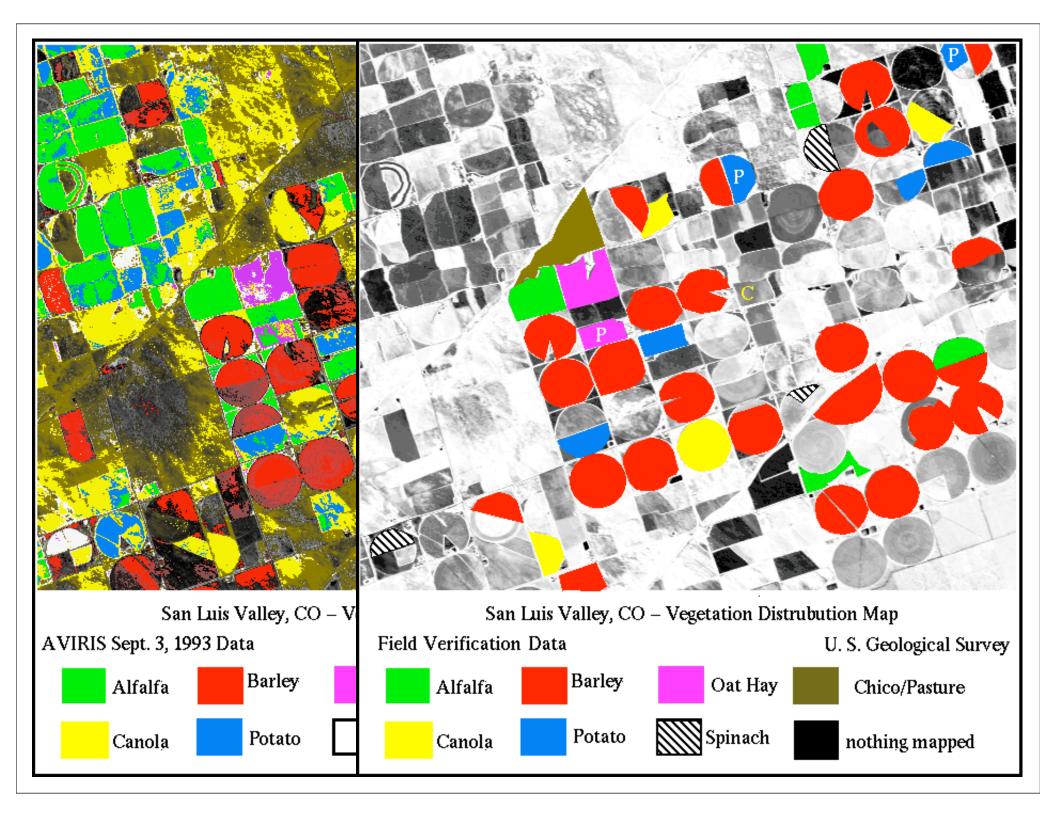
Mineral end-members?

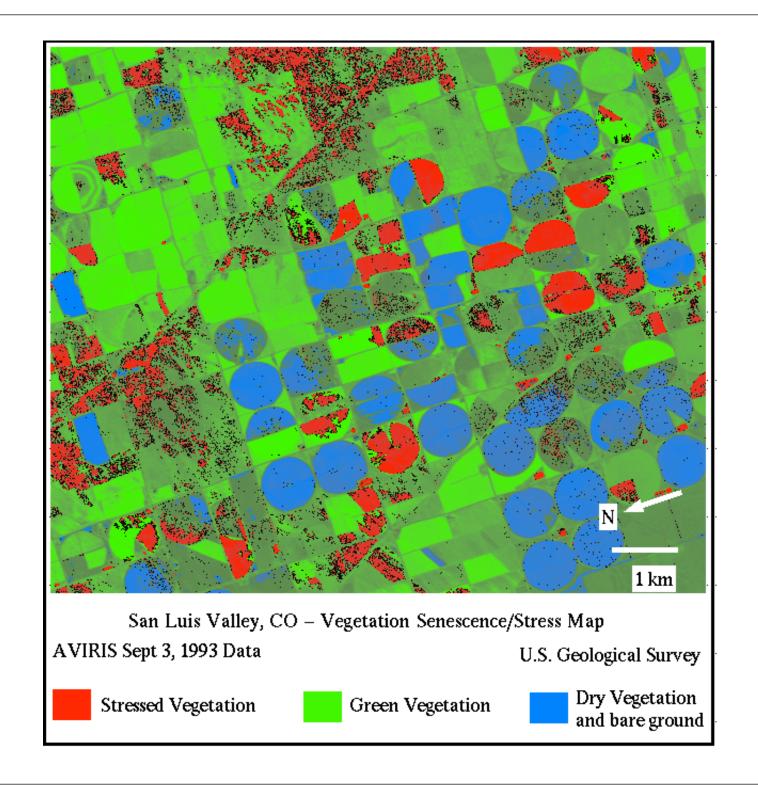




Applications

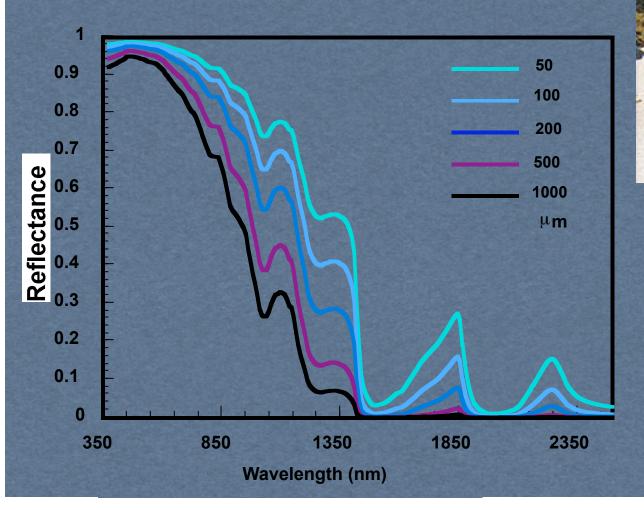




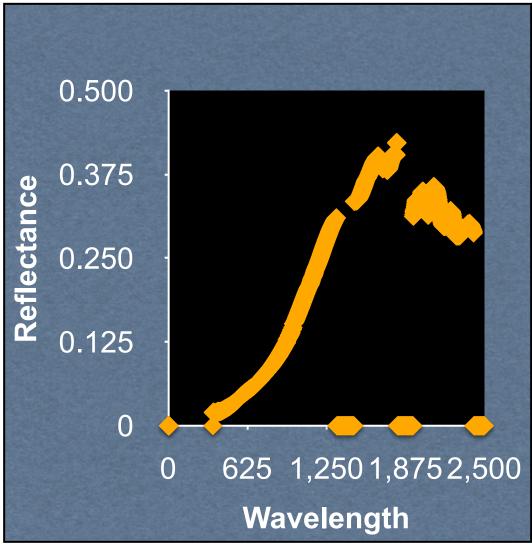


Snow Applications

grain size effects on snow reflectance



Gallus gallus (common chicken)



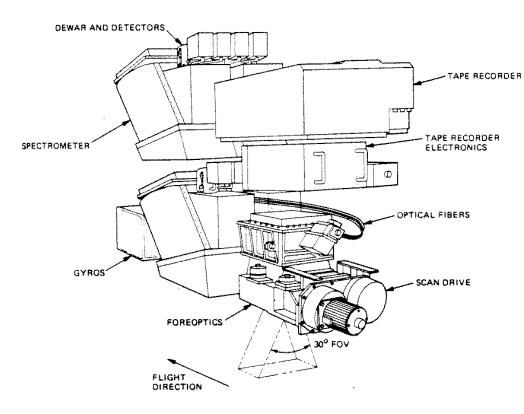
Summary

- Imaging spectrometry has broad application for many disciplines
- The strength of imaging spectrometry is in its direct link to physical processes and flexibility
- Imaging spectrometry complements broad band systems, does not compete
- Examples shown here, only reveal a small part of the established potential

Imaging spectroscopy data sources

data availability for imaging spectroscopy?

mainly ground and airborne sensors



Airborne Imaging Spectrometers:

<u>Name</u>	Full name	# of Bands	spectral coverage
AVIRIS (JPL)	Airborne Visible/Near Infrard Imaging Spectr	224	400 – 2450 nm
CAESAR (NLR)	CCD Airborne Experimenta Scanner for Applications in		520 – 780 nm
CASI (Itres)	Compact Airborne Spectro graphic Imager	- 228	430 – 870 nm
DAIS7915 (DLR)	Digital Airborne Imaging Spectrometer	79	400 – 12000 nm
EPS-A	Environmental Probe Syste	em 32	400 – 12000 nm
GERIS	Geophysical & Environmer Research Imaging Spectro		400 – 2500 nm
НуМар	HyVista Australia	126	450 – 2500 nm

Spaceborne Imaging Spectrometers:

<u>Name</u>	Full name	# of Bands	spectral coverage
ASTER (JPL)	Advanced Spaceborne Thermal Emission &	14	520 – 11650 nm
MERIS (ESA)	Reflectance Radiometer Medium Resolution Imaging Spectrometer	15	400 – 1050 nm
MODIS (NASA)	Moderate Resolution Imaging Spectrometers	36	415 – 14240 nm
SPECTRA (ESA)	Optical & Thermal spectro - ESA Earth Explorer Missi - to be launched in 2008 (- significant Dutch contribu	on ?)	400 – 14000 nm

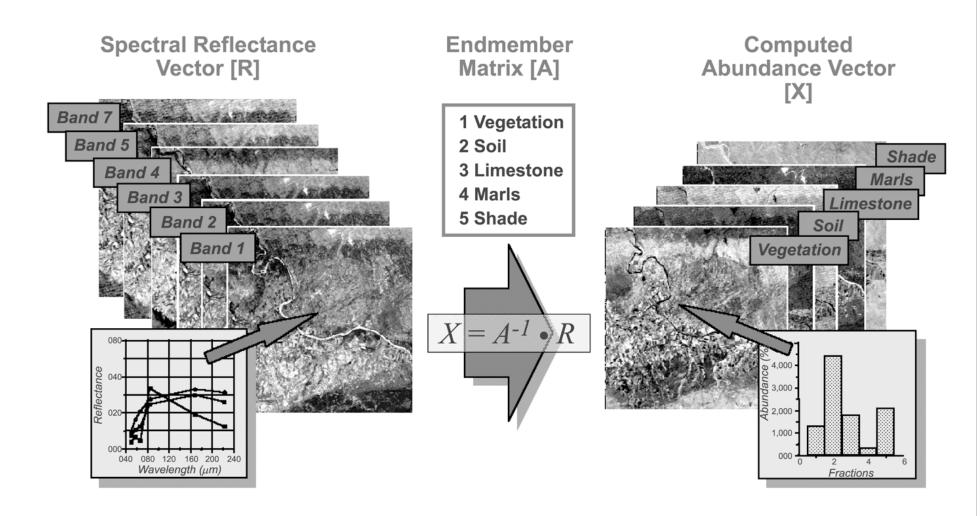
What is mixture modeling?

- hard vs. soft (fuzzy) information extraction
- classification requires that each pixel be given a <u>hard</u>, <u>unambiguous</u> label especially in homogeneous areas (H-resolution)
- in other instances, especially when pixel size is larger than homogenous objects (L-resolution) the land cover is in essence mixture of different land covers
- The purpose of mixture modeling is to estimate the proportion of individual elements (land cover objects) within individual pixels and it is an Lresolution problem.

What is mixture modeling?

- Classification categorical estimation
 - cookie-cutter model
- Mixture modeling continuous estimation
 - blender model
- there is improved technology and imagery
- there is increased demand for information such as secondary labels for vegetation
- soft (fuzzy) output maps

Spectral Unmixing



Unmixing accomplished via linear estimation, Supervised learning, or automated approaches

Kinds of mixture modeling

- linear vs. non-linear
- simple vs. probability-based
- supervised vs. unsupervised
- empirical vs. deterministic

Pixel (x,y) as spectral measurement Band I 52 DN Band 2 99 DN Band 3 I3 DN Band 4 25 DN Pixel (x,y) as fraction measurement Endmember A 0.4 Endmember B 0.6

Linear mixture modeling

 It can be assumed that the magnitude of a single photon reflected from the Earth's surface into the sensor field-of-view (pixel) is describable in terms of a simple linear model:

$$r_i = \sum_{j=1}^n a_{ij} f_i + e_i$$

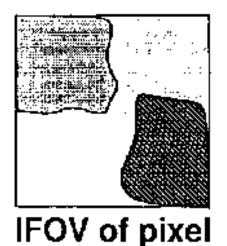
 $r_i = \sum_{i=1}^{n} a_{ij} f_i + e_i$ we are interested in the inverse of we are interested this equation

 r_i = reflectance in ith spectral band

 a_{ij} = reflectance of jth end-member in ith spectral band

 f_i = proportion of end-member j

ei = difference between observed and modeled reflectance (error)



a single pixel with three materials: A B and C

material	fraction	
A 囫	0.25	
В	0.25	
СП	0.50	

each endmember has a unique spectrum A

V

В

V

C

the mixed spectrum is just a weighted average

mix=0.25*A+0.25*B+0.5*C

Linear mixture modeling

- In order for the components (r) to be computed, the number of end-members must be less than the number of spectral bands
- This model simply expresses the fact that the integrated signal (r) received at sensor in a given band will be a linear sum of all individual signals from individual land cover types
- The constraint specifies that the individual fractions must take values between 0 and 100 percent and that the fractions for any given mixed pixel must sum to 100 percent or less.

What are end-members?

- End-member refers to <u>spectral</u> phenomena where the pure form of the category of interest (green leaves, soils, shade, water etc...)
- End-members are spectral only, and do not represent materials although spectra may represent materials
- End-members in an image refer to pixels (or locations) whose reflectance value corresponds to the reflectance value of the pure spectral sample
- These end-members correspond to the materials with spectra that combine <u>linearly</u> to produce all of the spectra in the image

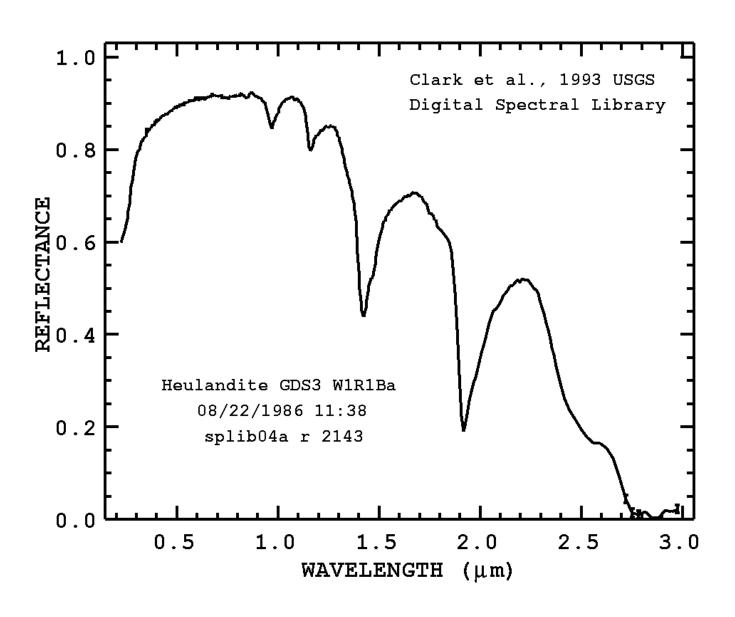
- spectroscopic library matching
 - make own in-situ observations
 - NASA-JPL spectral library

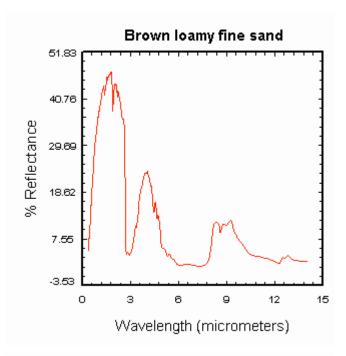
http://speclib.jpl.nasa.gov/

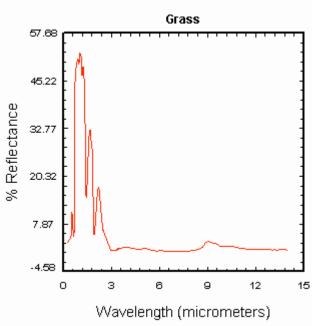
USGS spectral library

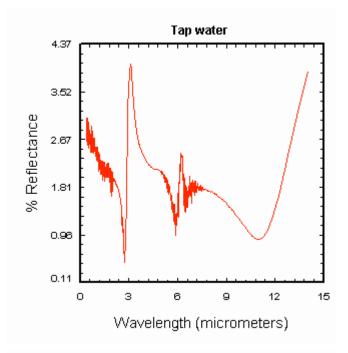
http://speclab.cr.usgs.gov/ spectral.lib04/spectral-lib04.html

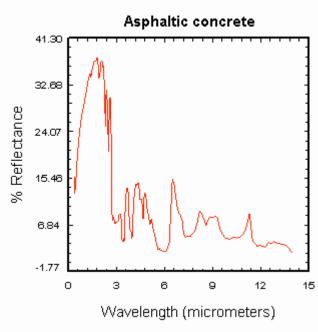
- empirical approach
 - extract from imagery at hand
 - extract from another imagery
- probabilistic approach











- spectroscopic library matching
 - make own in-situ observations
 - NASA-JPL spectral library

http://speclib.jpl.nasa.gov/

USGS spectral library

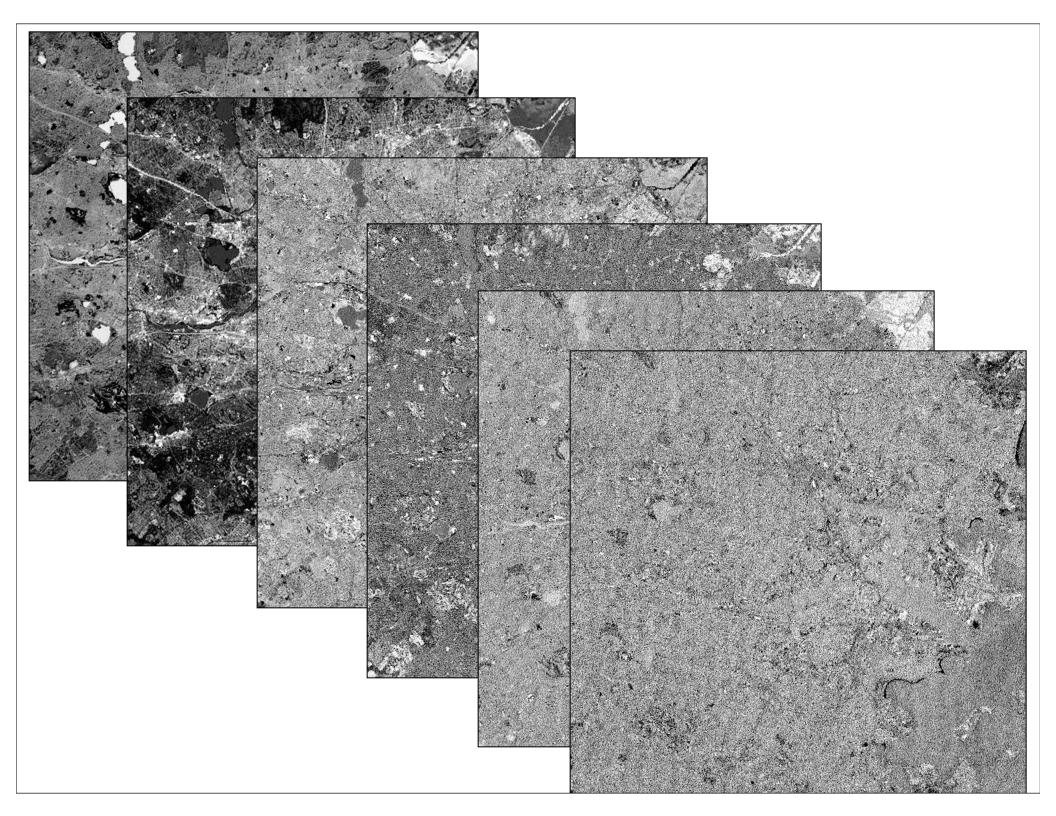
http://speclab.cr.usgs.gov/ spectral.lib04/spectral-lib04.html

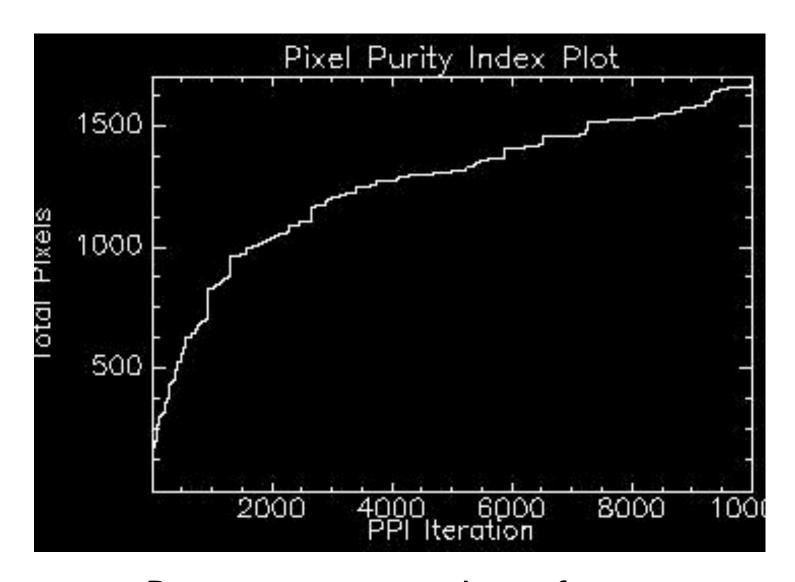
- empirical approach
 - extract from imagery at hand
 - extract from another imagery
- probabilistic approach

- Pixel Purity Index (PPI)
 - Sometimes, it is difficult to locate endmembers because only a few pixels contain pure samples
 - PPI is a rigorous mathematical method to repeatedly project n-dimensional scatterplots to 2-D space and marking the extreme pixels
 - Each time spectral data is projected, we can note the the most extreme (pure) pixels and simply keep track of the number of times a pixel is considered extreme to make PPI image

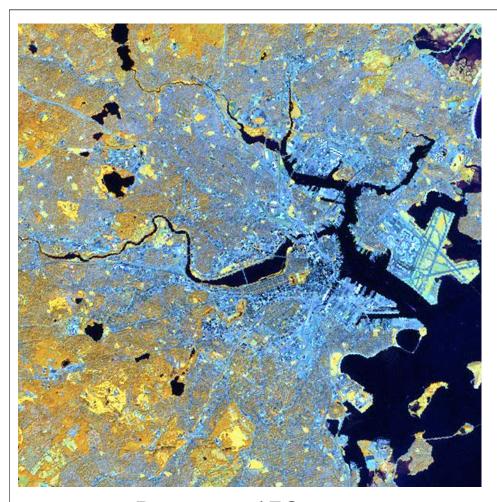
MNF

- used to reduce dimensionality and therefore noise in the image data set
- it is a cascaded PCA analysis approach
- the first de-correlates and scales noise in the data
- the second creates MNF eigen images (i.e. PCA)
- use these images in PPI analysis



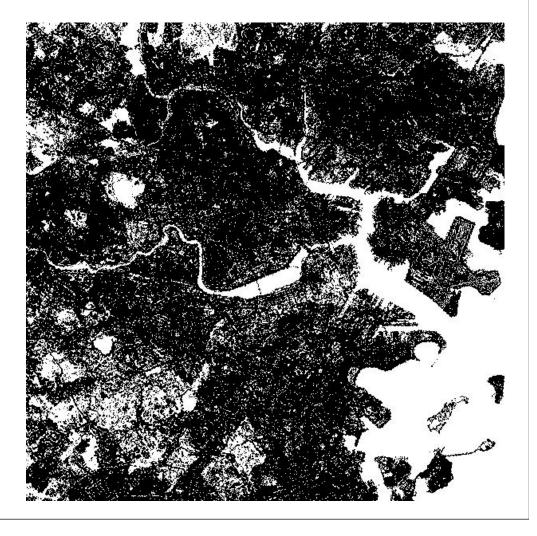


Boston image number of pure pixels after 10,000 iterations



Boston 453 as RGB

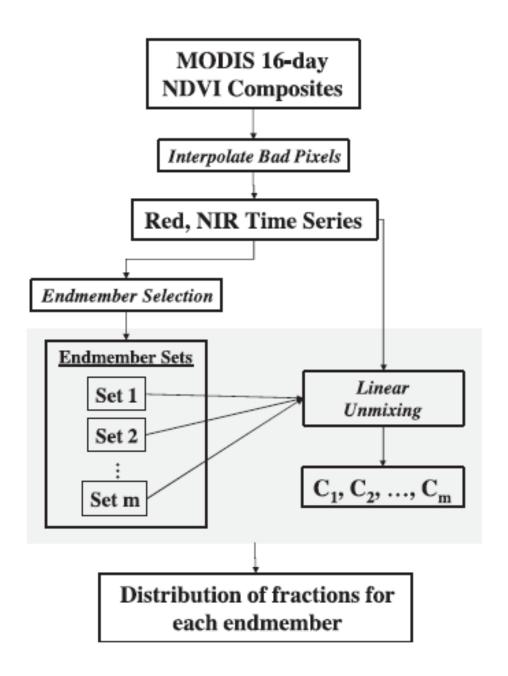
Boston PPI image



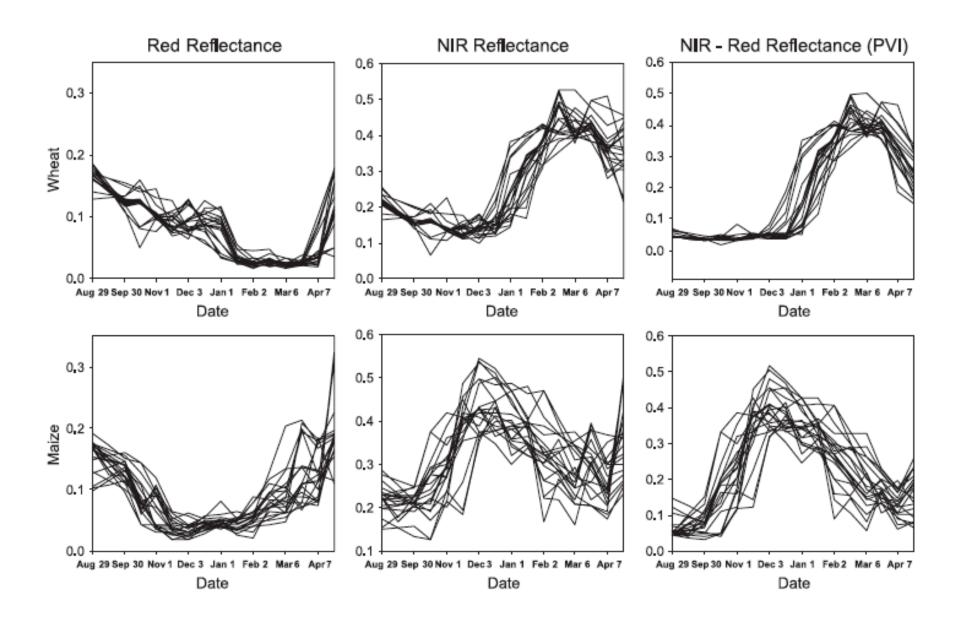
Issues in mixture modeling

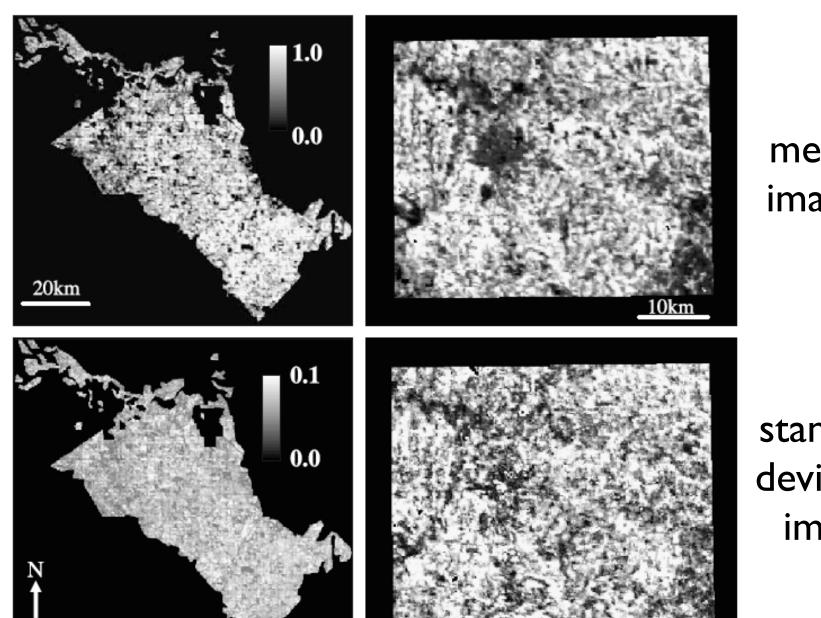
- bad (non-pure) end-member choice
- end-member variability
- fraction overflow
- omitted mixture component (missing important land cover category)
- data may not be able to describe the mixtures
- reflected photon into the sensor pixel has multiple interactions wit other surface objects
- non-linear relationships

- Linear mixture models assume that the end-member spectra are known exactly for each pixel
- In reality, however, reflectance is likely to vary across space and time, even for a narrowly defined endmembers
- So, rather than define end-members with a single spectrum, it is possible to define end-members as a set of spectra which represent the full range of potential variability
- Thus, end-member fractions are not estimated as single values, but rather as a probability distribution that can be used to construct confidence intervals appropriate to the desired application



Lobell and Asner (2004)





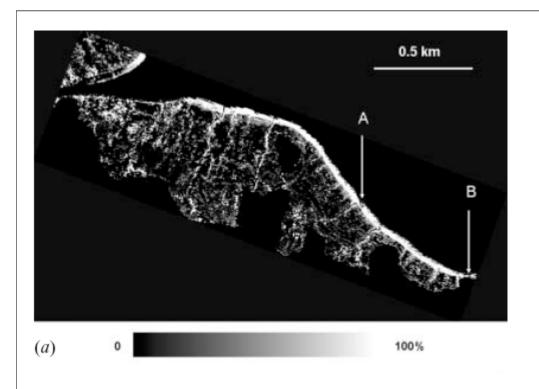
mean image

standard deviation image

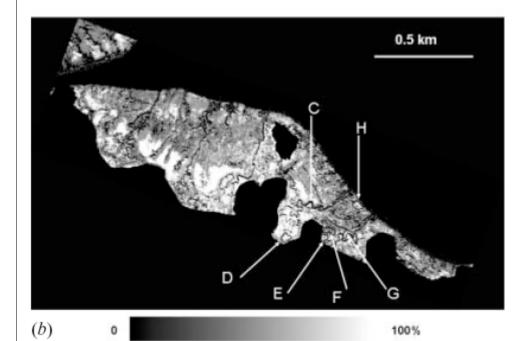
Lobell and Asner (2004)

Multi-endmember spectral mixture analysis (MESMA)

- Given the variation in the number of endmembers needed for optimal unmixing, the use of a fixed suite of endmembers can cause large errors in the estimated fractional cover
- MESMA assumes that although an image contains a large number of spectrally distinct components, individual pixels contain a limited subset of these
- MESMA decomposes each pixel using different combinations of possible endmembers, allowing a large number of endmembers to be utilized across a scene and the optimization of endmembers for individual pixels.



Fraction images of two different salt marshes found in the San Francisco Bay area developed by applying the MESMA method to airborne AVIRIS images



Spectral Angle Mapper (SAM)

- Spectral angle mapping is based on the well-known coefficient of proportional similarity, or cosine-theta approach
- This index defines that the degree of similarity between two objects (spectra in this case) may be evaluated in relation to the proportions of their presence
- For any two spectra, the index is determined from cosine theta which is merely the cosine of the angle between the two row vectors as situated in ndimensional space
- The index value of 0 means the two spectra are completely dissimilar and index value of +1 means the two spectra coincide

Spectral Angle Mapper (SAM)

$$\cos \theta = \frac{\sum_{i=1}^{N} r_i p_i}{\left(\sum_{i=1}^{N} r_i^2\right)^{0.5} \left(\sum_{i=1}^{N} p_i^2\right)^{0.5}}$$

ri - reference pixel vector pi - any other image pixel vector