

Land Cover and Land Use Change and its Effects on Carbon Dynamics in Monsoon Asia Region

Atul Jain

University of Illinois, Urbana-Champaign, IL USA

Email: jain1@uiuc.edu

Terrestrial Ecosystems, Land **Use Changes and Carbon Dynamics The Terrestrial Observation** Socio-Economic and Prediction **ISAM Model** Model (PET) System (TOPS) New Growth CO2 data Topography Point/Gridded climate Remote Sensing FLUXNET, Inventory, Soils Ground vegetation observations/forecasts EOS data/products Streamflow 10∨r Non-Woody Tree Parts 100vr FORMAL FILTERS Planning/Scheduling/ Data Acmisition & Decom Product pools {warib, others} Woody Tree Parts TEMPORAL Conversion flux {hourly-to-daily SPATIAL REPROJECTION population SCALING (up or down) С PCc₽ ₽⊳c Input Model cification Interfact MODEL MANAGER Land Surface Applications Models Models Ammonium N Nitrate N Output Model Vitrification Specification Interface eaching Data Denitrification N fixation/Deposition Derived Biophysical Variables GDP Calcutta Hone Indian Ocean

ISAM Estimated Land Use Emissions (1980s*) 30N EQ Jain and Yang (2005) 305 gC/m²/yr 60S 905 + 180 120E 120W 6ÓE 6ÓW Ô. Iontitude 100 -100 -5010 50 0.08 -FAO 0.06 ISAM-HH GtC/Yr/deg **Satellite ISAM-RF** 0.04 0.02 0.00 -0.02 -20 80 -80 -60 -40 20 40 60 0 Latitude *Clearing of Lands for Croplands

Estimated Net Primary Productivity (kg-cm⁻²yr⁻¹)

Tao and Jain (2005)

Open Fire CO2 Emissions (gC/m²/yr) 1990s

Application of MODIS, GLOBSCAR & GBA Jain et al. (2006), Jain (2007)

How do We Estimate The Effect of Land Use on Carbon Storage

Disturbance history Stand type forest age Ecosystem processes & Climate Change

Questions?

- What are the relative contributions of
 - Land use
 - natural ecosystem dynamics
 - fire
 - climate variability
 - N deposition
 - on forest and carbon dynamics in tropical forests?
- What are their synergistic effects?
- What are their potential future trends?

Changes in Land Use

- Changes in area
 - Croplands (clearing and abandonment)
 - Pastures
 - Wood harvest & recovery (primary and secondary forest)
- Changes in carbon stocks
 - Fire
 - Management practices

Historical Land Use Changes for Croplands

Land Use Changes - Croplands (2000)

Land Use Changes - Pasture and Wood Harvest (2000)

					KF	la			
\triangleleft									
0.0	0 C	.9	1.8	2.	7 3	7 4	6 5	.5 6	4 7.3

Estimation of Carbon Emissions from Land-Use Change and Net Carbon Storage/Release Across Monsoon Asian Region

Global C sources or release (+) and sinks or storage (-)

Global Terrestrial C-N ISAM

- 13 Biome types
- 0.5 x 0.5 degree resolution
- Carbon cycle
- Nitrogen cycle
- Feedbacks: Climate-C-N-LUC...

Biome Types

Tropical Evergreen Tropical Deciduous Temperate Evergreen Temperate Deciduous **Boreal Forest** Savanna Grassland Shrubland Tundra Desert Polar Desert Cropland Pasture

Jain and Yang (2005, GBC)

Global Terrestrial C-N ISAM

Yang et al. (2008)

Hydrology in ISAM

1

Model Calibration

- Long-term Inter-site Decomposition ExperimenT (LIDET) and other sitespecific data
- Leaf, wood and root litter decomposition data
 - C:N
 - Lignin:N
 - Climate

Yang *et al.* (2008)

Carbon Emissions from Land Use Changes

Emissions of C from Land Use Changes (1990s)

-150.0 -120.0 -90.0 -60.0 -30.0 0.0 30.0 60.0 90.0 120.0 150.0

Effect of Nitrogen Limitation on Secondary Forest

N Limitation leads to additional terrestrial carbon source

Historical Land Use Emissions

Other Estimates for Tropical Asia

Estimates of Deforestation Rates and C Emissions (1990s)

(10⁶ ha/yr) (PgC/yr)

- 8.9 0.4 (<u>+</u>0.5) Achard et al. 2004
- 8.0 0.4 (+0.4) DeFries et al 2002
- 10.8 1.1 (+0.5) FAO 2001, Houghton 2003 0.8 (+0.5) IPCC (2007)

Uncertainties in LU Emissions....

- Rates of land-use change
 - Deforestation, afforestation, abandonment
 - Other changes in land use
- Carbon biomass
 - ... of the ecosystems converted
 - Degradation and growth
- Interactions
 - Biophysical feedbacks

Factors Contribution to the <u>Net</u> <u>Carbon Storage/Release</u> Across Monsoon Asian Region

C Storage due to CO2 Fertilization Effect (1990s)

qC/m^2/yr

0.0

30.0

60.0

90 0

-120.0

-150.0

-90 0

-60.0

-30.0

Inclusion of N dynamics reduces CO2 fertilization effect

				gC/m^2/yr				
-150.0	-112.5	-75.0	-37.5	0.0	37.5	75.0	112.5	150.0

Change (1990s)

I Nitrogen Deposition - Fossil Fuel Burning & N Fertilizer

gN/m^2

1.9

2.3

2.8

3.2

0.5

0.9

1.4

1.9

0.5

0.9

Galloway et al. (2004)

N Deposition Effect on C Storage (1990s)

N deposition leads to additional terrestrial carbon <u>sink</u>

N Leaching (gN/m^2)

Terrestrial Response to Changes in CO2, Climate, N Deposition

- Climate introduces
 interannual
 variability
- CO₂ effect drives directional trend: net sink
- N deposition contributes small amount of C storage

Historical Net Carbon Flux

Terrestrial Response to Changes in CO2, Climate, LUC, N Deposition

Combined effect leads to a C sink for the 1990s

A Final Question (or two)

Are we biased in our observation of sources relative to sinks?

- Satellites see deforestation better than they see growth
- Are changes due feedback processes contribute more to sinks than sources?

Conclusions

- Changes in land use and management play a dominant role in determining sources and sinks of carbon.
- CO2 fertilization accounts for a major portion of today's carbon sink in monsoon Asian region ...

....perhaps all of it if we could measure it

Work in Progress...

- Model past, present and future carbon dynamics in the region
- Conduct remote sensing derived analyses of LCLUC and carbon dynamics

.....our collaboration with Dave Skole, Rama Nemanai and others

- Input field and remote sensing derived data into the ISAM
- Evaluate the impact of LCLCU on C dynamics in the future using socio-economic model coupled with the ISAM

.....our collaboration with Brian O'Neill of NCAR

Thank you..

The End

N dynamics - N unchanged: N Deposition and LUC effect on C flux (1990s)

N deposition leads to additional terrestrial carbon <u>sink</u> Land cove changes for cropland leads to additional terrestrial carbon <u>source</u>

N Storage in Soils and Vegetation

N in soils (kg N/m2)

N in vegetation (kg N/m2)

Terrestrial Nitrogen Cycle

- Inputs:
 - Nitrification
 - N deposition
- Outputs:
 - Leaching
 - Denitrification
 - N₂O, N₂, NOx
- Plant availability:
 - Supply v. demand
- Litter decomposition

Image source: US EPA

Response to Increasing CO2

- Terrestrial ecosystems are a net sink in both cases
- Inclusion of N dynamics reduces CO₂ fertilization effect

Without new N inputs mineral N available for plants declines

ISAM Simulations

>ISAM run to equilibrium with [CO₂] ~ 280 ppm and climate for early 1900s

- Five scenarios examined with and without N dynamics (1765-2000):
 - 1. Increasing CO_2 (~370 ppm by 2000)
 - 2. Climate variability (Temp. and Precip.)
 - 3. Increasing CO_2 + Climate variability
 - 4. Changes in N deposition
 - 5. Changes in land cover and land use

Land Use Emissions

ISAM Simulations

> Without N dynamics (Case C):

- N availability held constant at preindustrial levels
- > With N dynamics (Case NC):
 - N allowed to vary according to fully dynamic N cycle

Model accounts for the effect of available mineral N on NPP and soil decompositions

> Two time periods: 1900-2000, 1990's

Results