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Need for Inundation Monitoring
• Surface inundation plays important roles in Earth system processes

• land-atmosphere energy balance (Krinner 2003), 
• carbon and nutrient cycles (Shindell et al. 2005; Fox et al. 2014; McDonough et al. 2014), 
• surface – groundwater dynamics (Winter 1999; Becker 2006). 

• Wetlands and other intermittently inundated areas provide a range of ecosystem services 
• water purification, 
• climate and flood regulation, 
• natural hazards, food and fiber, and recreation (Millennium Ecosystem Assessment 2005),
• Biodiversity (Millennium Ecosystem Assessment 2005). 

• Aquatic ecosystems are being lost at alarming rates (Millennium Ecosystem Assessment 2005). 
• Pressure from a growing human population 
• Climate change 

• Inundation affects human welfare
• Water availability (e.g. for human consumption)
• Water-borne diseases
• Flooding



Need for High Spatial Resolutions

(Verpoorter et al. 2014)(Downing 2006)
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Limitations of Water Classifications

Prairie Pothole Region 
(Saskatchewan, Canada)

Max extent classification,
1985-2010 (Pekel et al. 2015)

Subpixe water 
fraction (This study)



Inundation Highly Variable Over Time

Inundation Probability in Different Seasons over the Last Three Decades over the Everglades



Research Objectives
• Develop and demonstrate improved capability to monitor terrestrial 

inundation 
• Develop automated algorithms suitable for inundation monitoring at the global scale 

using Landsat-8/Sentinel-2 (L8S2) optical data and Sentinel-1 (S1) SAR data. 
• Water/non-water classification
• Subpixel Water Fraction (SWF)

• Calibrate and test extensively 
• Test sites in US, Canada, Europe, Australia

• Generate near daily inundation products for United States and southern Canada



Landsat 8, Sentinel 2 Sentinel 1

OPTICAL DATA SAR DATA

Integration

Final Inundation Product

Water/Non-water 
classification

Subpixel Water 
Fraction

Water/Non-water 
classification

Subpixel Water 
Fraction

Classification algorithms 

Subpixel estimation algorithms

1. DSWE
2. Index/thresholding
3. Machine learning: SVM, RF

Optical-SAR Integration
• Cross-sensor calibration
• Time series statistics (e.g. 

inundation probability)

Classification algorithms 

1.Regression Trees
2.Self-training

Subpixel estimation algorithms 

Overall Approach

Automation key to near daily monitoring 
at continental to global scales.



Inundation Mapping Driven 
by Lidar Based Training Data

(Huang et al. 2014)



Dynamic Surface Water Extent (DSWE) 
Classification Algorithm for L8/S2

• DSWE tests:
1. MNDWI > 123 [scaled by 10000]
2. MBSRV > MBSRN
3. AWEsh > 0
4. MNDWI > -5000* & SWIR1 < 1000 & NIR < 1500
5. MNDWI > -5000 & SWIR2 < 1000 & NIR < 2000

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 =
𝐺𝐺 − 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
𝐺𝐺 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝐺𝐺 + 𝑅𝑅

𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 = 𝑁𝑁𝑁𝑁𝑁𝑁 + 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐵𝐵 + 2.5𝐺𝐺 − 1.5𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 − 0.25𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆
(Jones 2015)



Subpixel Water Fraction Algorithm

SR bands (30m)

Classified map:
- water, non-water, 

partial water

Initial SWF:
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- non-water = 0
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(Based on Rover et al. 2010)



PPR

DEL

EVE

Saskatchewan Prairie Pothole 
(PPR)
• small seasonal and ephemeral ponds 

fed by snowmelt in early spring and 
late summer storms

• airborne LiDAR, field surveys

Delmarva Peninsula (DEL)
• depressional wetlands (bays), flats and 

forested wetlands in riparian zones
• airborne LiDAR

Florida Everglades (EVE)
• wet prairie and sawgrass marsh, 

evergreen forest, mangrove, rush
• water level gauges, local DEM

Initial Test Sites



Continuous Water Level Measurements Over 
the Everglades



Time Series SWF Tracks Ground Observations
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• Pond perimeters delineated in late spring / early summer 
of 2005

• Purpose: establishing transects for multi-temporal soil 
moisture measurements

• Smaller ponds (classes 1-3) likely do not represent 
inundated area (probably ‘potential’ inundated surface)

Pond Classes 
(Carlyle 2006)

Pond Area Estimation Over Saskatchewan PPR
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Photos: 
Stephen Carlyle (2006)

Pond Area Estimation Over Saskatchewan PPR
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Penetration through 
heavy rainfall in C-
and L-band

SIR-C/X-SAR Images of a Portion of 
Rondonia, Brazil, April 10, 1994

Cloud Is A Major Problem in Optical 
Observations, But Far Less in SAR Data

(Zhong Lu)



Water Signal Highly Variable in Radar
Open water

Open water with waves

Water with vegetation

Dark soil / agriculture

GoogleEarth: 2014-02Sentinel-1 VH: 2015-03-13GoogleEarth: 2014-12Sentinel-1 VV: 2015-03-17

GoogleEarth: 2015-05Sentinel-1 VV: 2016-05-06 GoogleEarth: 2014-12Sentinel-1 VH: 2014-11-13



Sentinel-1 SAR Water Extent Mapping

ϒ⁰ = Gamma naught, α = Incidence angle
*Prior Mask:  DSWE=Dynamic Surface Water Extent, Multi-temporal class probability 
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Mapping Algorithm 1: Machine Learning 
Approach

Multi-Year 
Landsat 
Images

Multi-Year 
Water/non-

water 
classifications

Always inundated 
areas (water 

training samples)

Never inundated 
areas (non-water 
training samples)

DSWE Temporal 
Analysis

Inundation 
product

Image to be 
mapped

Machine 
Learning and 

Prediction



A. Multi-year land 
probability

B. Multi-year water 
probability

C. Highly confident (>95%) 
training samples

Training Data Derivation Using Multi-Temporal DSWE Products



RF_DSWE: Class 2015-03-17

Google Earth 2013-10-20

RF_DSWE: Prob. 2015-03-17

Machine Learning 
Approach Over 
Delmarvar



S1 Radar Mapping Over Everglades



S1 Radar Mapping Over 
Saskatchewan Prairie Pothole Region



Inundation change over time

Prototype Inundation Time 
Series from L8/S2/S1

5 km

Everglades



Prototype Inundation Time 
Series from L8/S2/S1



Large Area Prototype Over North Dakota
• Entire state
• All images available from 04/01/2016 to 10/31/2016
• Landsat 8

• 234 images
• Order and SR/cloud mask: ~3 days
• Mapping: ~30 h x 10 CPUs

• Sentinel-2
• 841 granules
• SR/cloud mask: ~28 h x 10 CPUs
• Mapping: ~35 h x 10 CPUs

• Sentinel-1
• 59 images
• Preprocessing: ~36 h
• Mapping: ~6 h



Large Area Prototype Over North Dakota

Repeat intervals: 1 – 16 days



Summary

• Automated surface water mapping 
algorithms developed

• Optical methods
• Mature for Landsat
• A manuscript ready for submission
• Some adjustment needed for S2

• Radar methods
• Tested over multiple sites
• Need more quantitative assessment

• Limited validation possible
• High resolution data for determining 

subpixel fraction 
• Temporal matching critical
• Gauge data with good DEM desirable

• Initial large area test over ND 
• Tried all available L8, S2, S1 images for 

summer 2016
• Preprocessing time >> mapping time
• Huge saving if preprocessed data 

available
• Optical data: at least 50%
• Radar: > 80%

• Next steps
• Try out HLS data
• Ensure optical-radar consistency 
• Develop more validation data sets
• Scale up to US and Southern Canada
• Analyze regional/national results
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