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A B S T R A C T

Tropical cyclones are natural events that transform into natural disasters as they approach and reach land. In
2017 alone, tropical cyclones caused an estimated $215 billion in damage. While MODIS data are regularly used
in the analysis of hurricanes and typhoons, damage studies typically focus on just a few events without providing
a comprehensive overview and comparison across events. The MODIS record is now sufficiently long to enable
standardization in time, allowing us to extend previously developed disturbance methodology and to remove
dependency on land cover datasets. We apply this new approach to detect the impact of both droughts and
hurricanes on the four largest Caribbean islands since 2001. We find that the percentage of disturbed land on the
four islands varies from approximately 0–50% between 2001 and 2017, with the highest percentages coinciding
with major droughts in Cuba, and Hurricane Maria in Puerto Rico. We demonstrate that (1) Hurricane Maria
resulted in significant disturbance across 50% of Puerto Rico (4549 km2), and (2) gradual recovery started about
2.5 months after the hurricane hit. While our approach focuses on the identification of damage arising from
hurricanes, it is also capable of identifying the damage from droughts. This approach ultimately enables a better
understanding of the combined effects of these two natural hazards across island landscapes.

1. Introduction

Tropical cyclones are natural events that transform into natural
disasters as they approach and reach land. In 2017 alone, tropical cy-
clones caused an estimated US$215B in damage (Faust and Bove,
2017). Some have argued that increases in tropical sea surface tem-
perature since the mid-1970s have increased the potential destruc-
tiveness of hurricanes as a result of longer storm lifetimes and greater
storm intensities (Emanuel, 2005). However, there is still great un-
certainty with respect to the effects of climate change on hurricane
frequency and intensity (Lugo, 2000; Pielke Jr et al., 2005). For ex-
ample, some of the latest climate projections forecast an increase in the
intensity of tropical cyclones by 2–11%, while decreasing the frequency
of the storms by 6–34% (Knutson et al., 2010).

Climate models also consistently predict drying for many low to
mid-latitude regions, with drier areas predicted to get drier and wetter
areas predicted to get wetter (Trenberth et al., 2014). In addition, as a
result of increased temperatures, the rate of drying is expected to in-
crease, resulting in the establishment of droughts more quickly and
with greater intensity (Trenberth et al., 2014). It is not uncommon for
ecosystems exposed to drought to also experience hurricanes (Beard
et al., 2005; Ortegren and Maxwell, 2014). Both droughts and the

excessive rainfall found during hurricanes have been linked to atmo-
spheric circulation patterns, such as the Atlantic Multidecadal Oscilla-
tion (AMO; Curtis, 2008, Elder et al., 2014, Fensterer et al., 2012,
Méndez and Magaña, 2010). The combined effect of these two natural
events can be highly destructive, and actual hurricane recovery may
take longer than expected following a major drought, such as was found
for lakes (Xuan and Chang, 2014). Teasing apart the combined effect of
even moderate hurricanes and moderate droughts is an important but
complicated endeavor requiring a better understanding of ecosystem
recovery processes following disturbance (Beard et al., 2005; Ortegren
and Maxwell, 2014) and a standardized dataset that allows for the
comparison of hurricane damage in a comprehensive manner.

Since 2001, 15 hurricanes have hit the Caribbean islands of Cuba,
Hispaniola, Jamaica, and Puerto Rico, affecting the approximately 40
million people living on those islands (World Bank, 2018). Droughts
have generally received less attention than other natural disasters in the
Caribbean (Beard et al., 2005), but a new downscaled drought dataset
demonstrated that between 2013 and 2016, the Caribbean faced its
most severe and widespread drought since the 1950s (Herrera and Ault,
2017). This drought was especially significant during the summer of
2015, when in June drought conditions covered 95% of the four major
islands in the Caribbean, with 82% under at least severe drought
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conditions and 58% under extreme drought. There are several global
and a few regional drought datasets available for regions affected reg-
ularly by hurricanes, such as the Caribbean (Herrera and Ault, 2017).
However, while remote sensing methods have been developed for the
detection of hurricane damage over the past few years, especially fo-
cused on the detection of hurricane damage on forests (Negrón-Juárez
et al., 2014), there are few long time series that allow for the stan-
dardized comparison of the effect of hurricanes.

The dense temporal resolution of MODIS data (daily, with 8-day
composites) and the relatively long time series available (2000–current)
make MODIS data ideally suited for the study of hurricane damage.
MODIS data are indeed regularly used in the analysis of hurricane and
typhoon damage (Chambers et al., 2007; Long et al., 2016; Parker et al.,
2017; Rogan et al., 2011; Rossi et al., 2013); however, studies have
typically focused on just one hurricane or, at best, a few and do not
provide a comprehensive overview—an exception being Potter (2014).
In addition, many of the MODIS analysis use simple vegetation indices
such as the NDVI and the EVI, with few extending to indices such as the
Tasseled Cap Water Index and the NDII (Jin and Sader, 2005; Wang and
Xu, 2010). In contrast, Potter (2014) performed a more comprehensive
analysis and presented a global assessment of damage to coastal eco-
system vegetation from tropical storms between 2006 and 2012 based
on quarterly differences in vegetation index imagery. The Quarterly
Indicator of Cover Change identified regions where at least a 40%
change in green vegetation cover occurred, demonstrating that ex-
tensive tropical forest damage could be detected following extreme
storm events (Potter, 2014). These data were not extended past 2012,
and the relatively coarse spatial resolution used (5600m) make them
less than ideal for the study of the Caribbean islands.

We have previously shown that a MODIS-derived disturbance index
based on standardized tasseled cap brightness, greenness, and wetness
data as derived by Healey et al. (2005) can successfully detect forest
clearance (de Beurs et al., 2016; Tran et al., 2016). We also demon-
strated that the disturbance index can be adapted for use in grasslands
(de Beurs et al., 2016). We have applied disturbance index analysis to
the central United States to demonstrate that it is quite effective in
identifying damage from tornados and can track the subsequent re-
covery phase (Kingfield and de Beurs, 2017).

A fundamental limitation of the disturbance index approach is that
it is relative: it relies on a comparison of potentially damaged pixels
against a normal distribution of typical “undamaged” pixels. For ex-
ample, in the case of forest disturbance, the approach requires a large
sample of normal, non-disturbed, forest pixels to serve as the baseline
for comparison. As a result, the approach is highly dependent on a high-
quality land cover map, and potentially information about aspect and
slope (de Beurs et al., 2016). Yet, the quality of land cover datasets
varies widely across the globe and low accuracies are prevalent, espe-
cially in areas with heterogeneous land cover (Gómez et al., 2016;
Herold et al., 2008)

The MODIS record is now sufficiently long to enable standardization
in time. Thus, here, we are extending the disturbance index approach
by removing the dependency on a land cover dataset by using the
length of the MODIS time series. We apply this new approach to detect
the impacts of hurricanes since 2001 on the four largest Caribbean is-
lands. By comparing the results against other standardized datasets,
specifically developed for the detection of droughts, we demonstrate
that it is also capable of identifying the impact of drought on the ve-
getated land surface.

2. Study region

We investigate the impact of hurricanes and droughts on the four
largest islands in the Caribbean Sea: Cuba, Hispaniola (hosting Haiti
and the Dominican Republic), Puerto Rico, and Jamaica. The total
population across these four islands was nearly 40 million in 2016
(Table 1).

Fig. 1 provides an overview map of the four islands based on the
MODIS Land Cover data (MCD12Q1) with the Plant Functional Type
(PFT) classification scheme from 2001. The most dominant land cover
type was evergreen broadleaf forest for Jamaica (61%) and Puerto Rico
(42%); whereas, it was broadleaf cropland for Cuba (46%) and grass-
land for Hispaniola (28%).

In the Atlantic Basin and Eastern Pacific, tropical cyclones with
sustained wind speeds of> 118 kph and center pressure of 980mbar
are considered to be hurricanes. The Saffir-Simpson Hurricane Intensity
Scale is used to further classify storms from Category 1 to Category 5.
Each island has been hit by at least one hurricane since 2001, with Cuba
enduring 11 hurricanes (Table 2).

3. Data

3.1. MODIS NBAR BRDF product – MCD43A4

We used the MODIS Nadir BRDF-Adjusted Reflectance Distribution
Product (MCD43A4) version 6, which simulates surface reflectance
values and is delivered daily, based on 16 days of observations (Schaaf
et al., 2002), with 463m spatial resolution. Both Terra and Aqua data
are used in the generation of the product to increase the probability for
a quality input to the models. We downloaded the data at eight-day
intervals between 2001 and 2017 for four tiles: H10V06, H10V07,
H11V06 and H11V07. For each of 782 time steps, we calculated the
MODIS Tasseled Cap brightness, greenness, and wetness values (Lobser
and Cohen, 2007) by multiplying each band coefficient by the corre-
sponding band value and then summing these values for each index
listed in Table 3.

After calculating these Tasseled Cap indices, we stacked the data in
temporal order. Missing data were filled using a median filter centered
on five sequential composites.

3.2. Hurricane paths

The Atlantic Hurricane Database (Atlantic HURDAT2, 2018;
Landsea and Franklin, 2013) was downloaded from the National Hur-
ricane Center (NHC), a division of the National Oceanographic and
Atmospheric Administration (NOAA). Atlantic HURDAT2 provides the
most accurate possible information on the track of historical hurricanes
and tropical cyclones in the Atlantic Basin. HURDAT 2 provides six-
hourly information on the location, maximum winds, and central
pressure of all known tropical and subtropical cyclones from 1851 to
2016. Data for individual storms were also downloaded for Hurricanes
Irma and Maria. These two storms fell outside of the Atlantic HURDAT2
database, but within the timeframe of the collected MODIS data. We
only evaluated the data for cyclones occurring since January 1, 2001.
We generated point files for the cyclone records, which we then inter-
sected with the extent of the four major Caribbean islands to identify
when (dates) and where (locations) the hurricane centers passed di-
rectly over land. These extracted point data for each event were con-
verted to a line representing the track of the storm across the island.

Table 1
Country population and GDP from the World Bank (2018).

Island Country Population Total GDP
(US$B)

Per capita GDP
(US$)

Cuba Cuba 11,475,982 80.656 7602
Hispaniola Haiti 10,847,334 8.023 766

Dominican Republic 10,649,791 71.584 7052
Puerto Rico Puerto Rico 3,411,307 103.135 30,833
Jamaica Jamaica 2,871,934 14.187 4879
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3.3. Drought data

The Caribbean has been affected by several severe droughts during
our study period. To better understand the spatio-temporal landscape
variability resulting from drought, we downloaded a high-resolution
drought dataset statistically downscaled to 4 km spatial and monthly
temporal resolution (Herrera and Ault, 2017). This dataset consists of
self-calibrating Palmer Drought Severity Index data. For this study, we
used all monthly observations between 2001 and 2016, which is the last
year available in this dataset.

3.4. Validation data

To validate the disturbance index results, we downloaded high-re-
solution, optical satellite data from the Open Data Program provided by
Digital Globe (https://www.digitalglobe.com/opendata). The Open
Data Program provides high resolution, commercial satellite images for
use in natural disaster damage identification. Of the 15 hurricanes that
directly hit the islands, only data for Hurricane Matthew over

Hispaniola and Hurricane Maria over Puerto Rico were available from
the Open Data Program. For validation of Hurricane Matthew, we
downloaded images from September 13, 2013 and October 15, 2016;
for Hurricane Maria, we selected images from August 21, 2017 and
October 16, 2017. These images were not entirely cloud-free, with
cloud cover between 10% and 30%, but they provided the best op-
portunity for validation at high spatial resolution.

Fig. 1. Study region overview figure based on MODIS Land Cover data from 2001.

Table 2
Named hurricanes with maximum windspeeds in kilometers/h (miles/h). Some hurricanes lasted multiple days.

Hurricane Category Max Wind Speed
(km/h)

Max Wind Speed
(miles/h)

Date Island

Michelle 3 185 115 11/04/01 Cuba
Isidore 1 121 75 09/20/02 Cuba
Lili 1 145 90 10/01/02 Cuba
Charley 2 169 105 08/13/04 Cuba
Dennis 3 193 120 07/08/05 Cuba
Gustav 3 193 120 08/31/08 Cuba
Ike 3 185 115 09/08/08 Cuba
Paloma 1 145 90 11/09/08 Cuba
Sandy 1 121 75 10/24/12 Jamaica
Sandy 2 161 100 10/25/12 Cuba
Matthew 3 209 130 10/04/16 Hispaniola
Matthew 3 185 115 10/05/16 Cuba
Irma 5 266 165 09/09/17 Cuba
Maria 4 249 155 09/20/17 Puerto Rico
Maria 3 201 125 09/22/17 Hispaniola

Table 3
MODIS Tasseled Cap Coefficients, from Lobser and Cohen (2007).

Band Brightness Greenness Wetness

Red 0.4395 −0.4064 0.1147
NIR 1 0.5945 0.5129 0.2489
Blue 0.2460 −0.2744 0.2408
Green 0.3918 −0.2893 0.3132
NIR 2 0.3506 0.4882 −0.3122
SWIR 1 0.2136 −0.0036 −0.6416
SWIR 2 0.2678 −0.4169 −0.5087
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4. Methods

4.1. MODIS disturbance index with temporal standardization

Following methodology described previously in other papers, we
standardized the TC brightness, greenness, and wetness before com-
bining these into a Disturbance Index (DI) (de Beurs et al., 2016; Healey
et al., 2005; Tran et al., 2016). The normalization was carried out as
follows:

= −Brightness t Brightness t μBrightness σBrightness( ) ( ( ) )/n (1)

= −Greenness t Greenness t μGreenness σGre nness( ) ( ( ) )/ en (2)

= −Wetness t Wetness t μWetness σWetness( ) ( ( ) )/n (3)

where t is a composite at time t and μ and σ are the mean and the
standard deviation, respectively, of the particular index for that com-
posite over the years. In previous papers, the mean and standard de-
viation calculations were carried out spatially, where each pixel was
compared to a distribution of values extracted from pixels with the
same land cover. The disadvantage of this approach is that it is highly
dependent on high quality land cover classification. In addition, aspect
and slope can have a strong influence on pixels even within the same
land cover (de Beurs et al., 2016). The MODIS time series now extends
17 full years (2001–2017). As a result, there are a sufficient number of
observations to enable the development of normal distributions of va-
lues in time. Thus, in Eqs. (1) to (3), the mean and the standard de-
viations were calculated based on the anniversary composites from
every year. In other words, the first pixel in the first composite in the
first year is compared to the mean and the standard deviation of the
first pixel for all first composites of each year. Thus, January 1, 2001 is
compared with the mean and the standard deviation of all January 1
composites between 2001 and 2017.

When natural vegetation is damaged as the result of a hurricane or
tornado (Kingfield and de Beurs, 2017), greenness and wetness typi-
cally decline as a result of vegetation loss while brightness increases,
because damaged areas typically absorb less solar radiation than areas
with healthy vegetation. As a result, we can calculate the disturbance
index as follows:

= − +DI t Brightness t Greenness t Wetness t( ) ( ) ( ( ) ( ))n n n (4)

Since normalized distributions typically have a mean of 0 and a
standard deviation of 1, we expect high DI values when there is a lot of
disturbance. For example, if a pixel brightness value is two standard
deviations brighter than average, i.e., its normalized value is 2, and the
greenness and wetness are two standard deviations less than average,
i.e., their normalized values are −2, then the resulting DI value is 6
(=2− (−2+−2)).

When normalized distributions are added or subtracted, their mean
and standard deviations are added (they are never subtracted). In de
Beurs et al. (2016), we demonstrated that if we set the threshold of
disturbance at 3, we have a 15.9% probability of identifying a pixel as
disturbed when, in fact, it is not (i.e., a false positive). Here we will
identify disturbed areas both based on a threshold of 2 (probability of
false positive equals 25.2%) and a threshold of 3. Note that the prob-
ability of a false positive is 9.1% for a disturbance value of 4, and 4.8%
for a disturbance value of 5.

4.2. Testing for normality

To compare composites properly, we need to assess whether the
sampling distribution of pixels follows a normal distribution. Several
tests have been developed to test for normality. For all those tests, the
null hypothesis is the “sample distribution is normal”; thus, a significant
result indicates that the sampling distribution may deviate from nor-
mality. One drawback of normality tests is their low power for small

sample sizes (Steinskog et al., 2007). Here we applied the Shapiro-Wilk
test to test for normality. The Shapiro-Wilk test is based on the corre-
lation between our observations and corresponding normal scores, and
it can be used for very small sample sizes. In addition, for small sample
sizes, this test provides better power than the Kolmogorov-Smirnov test
(Steinskog et al., 2007). We carried out the test for normality for each of
the 46 composites, evaluating the anniversary composites over the 17-
year period.

4.3. Validation

Before and after images provided by the Open Data Program for
Hurricane Matthew were overlaid to establish the overlapping area. We
randomly selected 25 independent validation regions consisting of four
MODIS pixels each. Each validation region was visually inspected to
determine the dominant land cover type and to determine the presence
of identifiable hurricane damage. For the samples that visually pre-
sented hurricane damage, we identified the disturbance index values
based on the MODIS data both before the hurricane hit and three weeks
after the hurricane went through. The same process was completed
using the Hurricane Maria images over Puerto Rico. We randomly se-
lected 46 independent validation regions consisting of four MODIS
pixels each for Hurricane Maria. We were able to select more validation
points in Puerto Rico, because the overall area with hurricane damage
was larger with a greater diversity in land cover types. Note that in this
validation, we focus specifically on the ability of the disturbance data to
quantify disturbance. As a result, the validation focuses on areas with
hurricane damage and we have not carried out a specific validation for
areas without damage. Nevertheless, we do confirm that the dis-
turbance index is close to zero (the expected value for no damage)
before the hurricanes hit.

5. Results

5.1. MODIS DI and standardization results

Fig. 2 provides the mean brightness, greenness, and wetness images
for Cuba. With brightness values displayed in red, greenness values
displayed in green, and wetness values displayed in blue, the map of the
mean values of the Tasseled Cap Indices closely resembles the MODIS
derived land cover data. Urban areas have higher values in the
brightness index, but lower values in wetness and greenness. These
areas show up in orange and red colors. Forests present higher values in
greenness, moderate values in wetness, and lower values in brightness.
As a result, forest areas show up in darker green colors. Water has
virtually no brightness or greenness and, thus, appears blue. Croplands
and grasslands appear in mixtures from brown to yellows.

We applied the Shapiro-Wilk test to determine the number of
composites that do not follow a normal distribution in brightness,
greenness, and wetness data separately and found that 99.9% of all
pixels exhibited normality for> 90% of all composites. As a result, we
concluded that our standardization method based on the normal dis-
tribution generates valid observations.

5.2. Disturbance detection: droughts

The percentage of disturbed land on the four islands varies from
approximately 0–50%, with the highest percentages coinciding with
major droughts (Fig. 3) and immediately after hurricane Maria in
Puerto Rico (Fig. 6).

It is apparent that longer periods of drought result in greater overall
disturbance and that rainfall quickly alleviates drought effects, e.g., in
Cuba there was a major drought through 2004 and early 2005, ending
later that year. The percentage of disturbed pixels increased almost
immediately at the beginning of the drought and remained high
throughout the period. By 2005, 45% of Cuba (49,446 km2) was
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Fig. 2. Three colour composite of the mean Brightness, Wetness, and Greenness Tasseled Cap Indices for the island of Cuba. Lower left inset showing forests on the
eastern end of the island. Lower right inset showing Havana and surrounding area.

Fig. 3. Orange and blue provide the Palmer Drought Severity Index for Cuba (upper left), Hispaniola (upper right), Puerto Rico (lower left), and Jamaica (lower
right). The dotted line provides the percentage (divided by 10 for visualization) of the island that is classified as disturbed (DI > 3). Large drought periods are linked
with strong disturbances, for example the 2004/2005 drought in Cuba disturbed 45% of the island. The vertical lines indicate the timing of the hurricanes; in the case
of two hurricanes within one month only one vertical line is drawn. (For interpretation of the references to colour in this figure legend, the reader is referred to the
web version of this article.)
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Fig. 4. Maximum drought months (upper pair) on Jamaica (left) and Puerto Rico (right) with the corresponding disturbance index data (lower pair) for that month.
Severe droughts have negative PDSI values and disturbed land has values over 2.
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Fig. 5. Major hurricanes affecting Cuba and the observed disturbance data.
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significantly disturbed (DI > 3). The percentage of disturbed area de-
clined immediately when drought conditions eased. Similar responses
are evident in Hispaniola after the 2003 drought, as well as in Puerto
Rico (e.g., 2015) and Jamaica (2004–2005 and 2013–2016), although
the percentage of disturbed land on these islands rarely exceeded 25%.
When we compare the PDSI with the DI spatially, we observe that there

is greater variation in the DI data than in the PDSI data resulting from
the difference in spatial resolution: approximately 4 km for the PDSI
versus 500m for the DI (Fig. 4). Note that the PDSI data provides a
measurement of climatological drought severity, while the DI provides
a measurement of the damage to the vegetation. Not every drought
event will directly result in disturbance apparent in the landscape. For

Ma�hew 
(10/04/2016) 

Hurricane Puerto Rico 
Maria 
(09/20/2017) 

Fig. 6. Major hurricanes affecting Hispaniola and Puerto Rico, and the observed disturbance data. The legend for the hurricane speeds and the disturbance data can
be found in Fig. 5.

Michelle
(11/04-
05/2001)

Fig. 7. Before hurricane Michelle (top), Cuba al-
ready displayed a relatively large amount of dis-
turbance. This disturbance increased substantially
immediately after hurricane Michele made landfall
on Cuba (middle). About two months after the hur-
ricane made landfall, the drought has been alle-
viated somewhat and some of the immediate dis-
turbance has recovered (bottom). The legend for the
hurricane speed and the disturbance data can be
found in Fig. 5.
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example, irrigation or urban landscapes might not experience any dis-
turbance from the lack of precipitation because soil moisture is main-
tained through human intervention. In Puerto Rico, the severe drought
of August 2015 did not affect the landscape evenly, with no significant
disturbance in large parts of the central forested highlands (Fig. 4). A
similar pattern is visible in Jamaica, where the drought that started in
the beginning of 2015 and lasted through the end of the observation
period (December 2016) is evident almost everywhere across the island,
while the main area of disturbance is visible only in the central portion
of the island.

5.3. Disturbance detection: hurricanes

The disturbance index can clearly reveal the impact of hurricanes.
We have mapped out all hurricanes that hit Cuba between 2001 and
2016 (Fig. 5) as well as the impact of Matthew on Hispaniola and Maria
on Puerto Rico (Fig. 6).

Isidor and Lili in 2002 were combined into one map, as were Gustav
and Ike in 2008, because the hurricanes occurred within one month of
each other, making the damage from their crossing paths difficult to
separate. The impacts from each hurricane are clearly visible on the

landscape, with greater windspeeds causing significantly more damage
(Figs. 5, 6). We also find that while the effect of the hurricanes can be
devastating, the total area affected is relatively localized, except for
hurricane Maria, which affected all areas of Puerto Rico. The damage
from Michelle and Charley on Cuba appears larger and more wide-
spread than expected, as a result of concurrent drought (Fig. 3). Hur-
ricane Michelle struck Cuba in the middle of a short but severe drought
(Fig. 7). The widespread drought effect is clearly visible on Cuba's
landscape right before the hurricane hit, but the disturbance index re-
veals increased disturbance in the area where Michelle hit. The drought
is clearly alleviated following the rains delivered by Michelle (Fig. 7,
bottom).

Fig. 8 also shows that the rainfall brought by hurricane Matthew
alleviated drought conditions on Hispaniola and Cuba.

5.4. Disturbance validation

Hurricane damage detection is not necessarily straightforward, even
when high resolution images are available. Fig. 9 reveals a damaged
area in Puerto Rico after Hurricane Maria.

As mentioned earlier, cloud cover can make it difficult to find un-
obscured high-resolution imagery to map hurricane damage in the
Caribbean. We selected before and after images for Hurricane Matthew
in Hispaniola and Hurricane Maria in Puerto Rico to validate the dis-
turbance data (Fig. 10). For Hurricane Matthew, we identified that 21
of the 25 samples visually revealed hurricane damage, two samples
were too cloudy to identify any damage, and we were unable to identify
damage on the remaining two sites (Fig. 10). We identified the dis-
turbance index values both before the hurricane hit and three weeks
after the hurricane event based on the MODIS data for the 21 samples
for which we confirmed hurricane damage (Fig. 10). Before the hurri-
cane, the disturbance index was not significantly different from zero,
which is our expected value for no damage. After the hurricane the
disturbance index was significantly higher, with an average DI value of
5.92, and 20 out of 21 samples revealed disturbance values well above
zero.

We were able to identify a greater number of samples for Maria,
which allowed us to separate the effect of hurricanes on developed
lands from the impact on vegetated land (Fig. 10, Table 4). We found
that the disturbance index was not significantly different from 0 before
Maria hit Puerto Rico. After Maria hit the average disturbance index
increased to 2.40 for developed land and 3.37 for vegetated land. Thus,
the disturbance index was capable of measuring disturbance on both
land covers, but the increase in the disturbance index was higher over
vegetated land compared to developed land and, while the developed
areas revealed an increase in DI, the ultimate DI values was often not
above two after the hurricane (Table 3).

It is important to emphasize here that it is much easier to identify
that a sample displayed damage, than to identify the absence of da-
mage. As a result, we focused our validation efforts on the detection of
damage. Nevertheless, we note that before the hurricane hit the average
disturbance values were zero (the expected value for areas with no
damage).

6. Discussion

6.1. Remotely sensed hurricane damage detection

A review of the literature results in several papers which rely, at
least partly, on the use of vegetation indices, such as the Normalized
Difference Vegetation Index (NDVI) or the Enhanced Vegetation Index
(EVI) for the detection of hurricane damage. For example, before and
after MODIS Enhanced Vegetation Index (EVI) imagery were used to
detect damage of Hurricane Felix on the broadleaf and pine forests of
Nicaragua (Rossi et al., 2013). They reported greater damage in the
broadleaf forests, with>75% of the trees blown down in some areas,

Fig. 8. Hurricane Matthew causing disturbance on Hispaniola and Cuba, but
relieving drought. The legends for the PDSI and the disturbance data can be
found in Fig. 4.
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than in the pine forest. They concluded that the spatial resolution of the
250m MODIS data was sufficient for damage assessments after hurri-
canes in (sub-)tropical forests. Two other studies investigating hurri-
cane landfall damage along the northern Gulf of Mexico and south-
eastern Yucatan in Mexico also used differences in EVI to measure
hurricane damage (Rogan et al., 2011; Wang and D'sa, 2009) with si-
milar results. While it is possible to use NDVI or EVI to investigate
hurricane damage (Hu and Smith, 2018), we have demonstrated pre-
viously that the defoliation and surface disturbance detected as a result
of tornadoes disappears more quickly when analyzed with NDVI data
than with disturbance index data (Kingfield and de Beurs, 2017). We
have found a similar effect in this paper for the hurricane damage on
the Caribbean islands; for example, Hu and Smith (2018) indicated that
vegetation returned to near-normal about 1.5 months after Hurricane
Maria affected Puerto Rico and Dominica in 2017. Recovery from dis-
turbance appeared much slower when analyzed using our disturbance
index approach. After Hurricane Maria hit Puerto Rico, we found that
50% of Puerto Rico (4549 km2) showed significant disturbance (DI >
3). We found signs of recovery in the disturbance data starting about
8–12weeks after hurricane Maria hit; however, by the end of 2017, the
disturbance index was still > 3 across 31% of the island (2822 km2).

We believe that the quick recovery in NDVI data is often the result
of increased rainfall generating a leaf pulse in hurricane-affected ve-
getation (Parker et al., 2017). Although the remotely sensed data might
reveal a return to normal levels of NDVI relatively quickly, the actual
vegetation canopy can take much longer to recover to pre-disturbance
conditions. For example, tall mangrove stands might take> 20 years to
recover fully; whereas, shrublands can recover much more quickly
(Imbert, 2018). In Taiwan, it took two years for litterfall to return to
pre-typhoon levels after a major event in 1994, and annual peak leaf
area index only returned to pre-event levels after ten years (Lin et al.,
2017).

Instead of one of the more common vegetation indices, such as
NDVI or EVI, a few studies have investigated changes in the leaf water
content after hurricanes (Jin and Sader, 2005; Wang et al., 2010), for
example using the Normalized Difference Infrared Index (NDII) that
combines the near infrared (NIR) and shortwave infrared (SWIR) bands.
Wang et al. (2010) indicated that NDII was more sensitive to vegetation
changes after hurricanes, especially in areas dominated by forests,
which results in loss of NDVI sensitivity due to higher levels of leaf area
index (Vina et al., 2004). Others have also expanded to other parts of

the electromagnetic spectrum. For example, a MODIS instantaneous
Global Disturbance Index using EVI and Land Surface Temperature
(LST) was developed to detect disturbances, such as hurricanes, across
North America (Mildrexler et al., 2009). An evaluation of the effects of
Hurricanes Katrina, Rita, and Wilma revealed that this disturbance
index was able to pick up the expected effect of high severity dis-
turbance near the shoreline and moderate severity disturbance inland,
although the authors acknowledged that more research was necessary
to evaluate the moderate severity disturbance detections.

Wang and Xu (2010) compared four different algorithms and sev-
eral different spectral indices to assess the damage of Hurricane Katrina
on forests. They found that the impact of the selection of classification
method was less important than the effect of the selection of the
spectral index. They also found that the Tasseled Cap Wetness index
outperformed five other tested indices and that a post-classification
comparison proved the most accurate methodology (Wang and Xu,
2010). (See Wang et al. (2010) for an overview of other post-storm
damage assessment studies, predominantly using vegetation indices.)

6.2. Hurricane and drought interaction

Vegetation gains due to additional rainfall are regularly observed in
the aftermath of hurricanes. For example, in dryland forests, where an
increase in the NDVI was visible within a few months after Hurricanes
Jova and Patricia affected Mexico (Parker et al., 2017). We have de-
monstrated that the MODIS disturbance index standardized in time is
effective at identifying disturbance resulting from both hurricanes and
droughts. An example of drought and hurricane interaction can be
found after Hurricane Matthew (Fig. 8). It was the strongest storm to
impact Haiti (western Hispaniola) since the early 1960s, resulting in
major damage and as many as 546 deaths. Hurricane Matthew hit both
Cuba and Hispaniola as a category 4 hurricane, depositing between
400mm and 500mm of rain in these countries and effectively alle-
viating a drought in parts of these islands (Fig. 8). This impact is not
unlike the effect of Atlantic tropical cyclones on drought over the
Eastern United States (Kam et al., 2013; Maxwell et al., 2013). We have
also demonstrated that not every climatological drought condition re-
sults in an observable disturbance to the landscape, with drought effects
being often slow to appear in forested areas (e.g., Fig. 4).

Fig. 9. Before and after damage detection for a mixed urban/vegetated area Puerto Rico. The MODIS based disturbance index had a value of 1.43, which increased to
2.98 after the storm. Green vegetation is visible on both images. However, the after image shows the disappearance of several trees in the urban area, as well as a
browning of the forested region in the upper left. Note that the disturbance value before the storm was relatively high (1.43) as a result of the mixed nature of this
pixel and a drought. Nevertheless, the disturbance index increased substantially as a result of the storm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)
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6.3. Validation of hurricane damage

While the MODIS-derived disturbance index can be used to track
damage and recovery from both hurricanes and droughts on vegetated
and developed lands, we have found that it is more sensitive to dis-
turbances on vegetated landscapes. This sensitivity is a result of the
incorporation of the Tasseled Cap greenness index, which measures
declines in greenness on the landscape and the exposure of soils after
disturbances. It is also important to point out that large-scale validation
of the effect of hurricanes is complicated in several ways:

1) Hurricane damage significantly hampers field validation

opportunities, and it is difficult to plan large field campaigns around
the potential for hurricanes. As a result, it is very difficult to tie the
disturbance index values to ground damage assessments.

2) Hurricane damage often occurs during periods and in regions with
very dense cloud cover. As a result, it is difficult to find high re-
solution, or even moderate resolution cloud-free before and after
satellite images as we experienced in this study. As an example, we
have downloaded all Landsat images (L1T) from 1984 until now
during the hurricane season (July–December) for two Landsat WRS-
2 Path/Row scenes (P16/R44 and P11/R46) in the East and West of
Cuba. Over the entire time period we found a total of 301 images in
Western Cuba, and 361 images in Eastern Cuba. For each image we
used the provided quality assessment data to identify if a pixel
contains cloud cover. Fig. 11 provides a cloud climatology based on
these Landsat footprints over Cuba showing that almost half
(48.31%) of P11//R46 was cloud-free < 50% of the time and 70%
of P16/R44 was cloud-free < 50% of the time. In addition, coastal
areas, where the hurricane damage is often the most severe, show
even higher percentages of clouds, some regions missing as much as
80% of the data. This cloud climatology also explains why it is so
difficult to carry out standardized “before-and-after” comparisons to
identify hurricane damage, e.g., the probability of finding a cloud-
free before-and-after pixel pair can be calculated by multiplying the
values in Fig. 11. Lastly, expanding the potential “before” and
“after” time periods for comparison, might aid in the probability of
finding cloud-free data, but as described above, hurricane damage
can recover rather quickly. Thus, the potential for finding a stan-
dardized hurricane response will be greatly diminished.
For comparison purposes, we also investigated New Orleans (P22/
R39) and Oklahoma City (P28/R35). We found significantly more
images for New Orleans (496), but determined that 50% of the area
was cloud-free< 50% of the time, similar to Cuba. In contrast,
Oklahoma City, which is more inland, showed that the 50% of the
pixels were cloud-free at least 80% of the time.

3) While we note that droughts are visible in the disturbance index
data, we did not provide an explicit validation of the effect of
droughts (other than Fig. 3). We also did not attempt to use the
disturbance index data to identify whether a disturbance is the re-
sult of drought, or the result of hurricane damage. Since we had
good hurricane track data available (Hurdat 2), we assumed that
disturbances detected immediately after a hurricane are due to that
event. Vice versa, since we had good drought data available (Herrera
and Ault, 2017), we assumed that disturbance identified to coincide
with observed droughts are due to that hazard. Instead, we proposed
this standardized dataset approach as a way to identify the damage
caused by these two natural hazards in a standardized manner that
enables comparison of the effects of hurricanes over time and for
different ecosystems.

6.4. Other available data sources

Hurricanes often cause significant flooding in addition to major
wind damage. It is not possible to use the MODIS disturbance data to
map the flooding as it is ongoing, because the optical MODIS sensor is
unable to penetrate the significant cloud cover that accompanies hur-
ricanes. A recent paper demonstrates the use of Cyclone Global
Navigation Satellite Systems (CYGNSS) data, which has a spatial re-
solution of a few kilometers and a temporal resolution of just a few days
(Chew et al., 2018). Combining these types of data with the MODIS
disturbance index might generate an opportunity to better understand
where flooding occurs and how long the damage remains visible on the
landscape. Visual evaluations reveal very similar damage agreements
between the CYGNSS data and the MODIS disturbance data reported
here for Hurricane Irma.

The Visible Infrared Imaging Radiometer Suite (VIIRS) flying on the

Fig. 10. (top): Boxplot shows the distribution of the mean DI for all validation
points showing visually identified hurricane damage one week before
Hurricane Matthew and three weeks after the hurricane. (N=21). (bottom):
Box plot showing the distribution of the mean DI of validation points on Puerto
Rico when sorted between developed (urban and suburban) and vegetated
(forest, scrub, and other natural vegetation). Not that the y-axes are different
for the two sets to better visualize the distributions.

Table 4
Number of samples that are visibly damaged and their corresponding DI class
according to MODIS.

Developed Vegetated Total

MODIS DI < 2 14 4 18
MODIS DI > 2 7 21 28
Total 21 25 46
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Suomi National Polar-orbiting Partnership (NPP) satellite since 2011 is
the operational replacement for the MODIS sensors that are currently in
service well beyond their six-year life span. To transfer the disturbance
index methodology presented here to the VIIRS data, it will be crucial
to understand how the VIIRS data with a much shorter temporal record
can be standardized against the MODIS observed time series. The VIIRS
spectral bands are slightly different than the MODIS bands. Tasseled
Cap coefficients will need to be newly developed for VIIRS, and we are
not aware that any such coefficients have yet been developed.

It is important to point out that our disturbance dataset is unable to
estimate monetary damages: economic impacts on developed land are
usually much greater than the impacts on vegetated areas. While the
spectral bands available on VIIRS are comparable to the MODIS bands,
VIIRS also has a Day/Night Band, which is particularly sensitive to very
low levels of light and allows for the tracking of nighttime lights. These
data have been used to understand the effect of hurricanes on power
outages that can be directly linked to the socio-economic impact of
these storms (Cao et al., 2013; Miller et al., 2018). Another potential
opportunity for the use of the VIIRS data would be to link our dis-
turbance dataset with data from the VIIRS day/night band (Román
et al., 2018), which might prove useful for the understanding of damage
on both vegetated and developed land surfaces (Wang et al., 2018).

7. Conclusions

To better study the combined effects from droughts and hurricanes,
it is important to have a stable disturbance dataset that (1) is not
strongly influenced by seasonal variation and (2) can be used to track
recovery from hurricanes in a standardized way. Based on this dataset,
it will be possible to evaluate whether the size of the damage area from
hurricanes can be predicted based on the hurricane strength, whether
there is a seasonal difference in damage severity and recovery time, or
whether certain ecosystems recover more rapidly than others.
Furthermore, it will be possible to start teasing apart the effects of
droughts and hurricanes. For example, do hurricanes cause damage in
larger areas if preceded by a drought? Is the damage more severe after
drought (e.g., higher disturbance index values) or does it take longer for
the ecosystem to recover? The disturbance index approach developed in
this paper can be used in such a manner to not only report the damage
from one or a few hurricanes, but to report the damage of multiple
hurricanes in a standardized fashion. The dataset is also capable of
identifying the damage from both droughts and hurricanes, which can
be used to better understand how the combined effects of these two
natural hazards impact landscapes.

Acknowledgements

This research was supported in part by the NASA Science of Terra &
Aqua project NNX14AJ32G entitled Change in our MIDST: Detection and

analysis of land surface dynamics in North and South America using mul-
tiple sensor datastreams. The authors thank Prof. Toby Ault of Cornell
University for the use of his dataset. The MCD43A4 product was re-
trieved from the data pool of the NASA EOSDIS Land Processes
Distributed Active Archive Center (LP DAAC), USGS/Earth Resources
Observation and Science (EROS) Center, Sioux Falls, South Dakota. The
authors thank the helpful input of two anonymous reviewers that
helped improve the clarity of the presentation.

References

Atlantic Hurdat2, 2018. Atlantic HURDAT2. pp Page. https://www.nhc.noaa.gov/data/
hurdat/hurdat2-format-atlantic.pdf.

Beard, K.H., Vogt, K.A., Vogt, D.J., et al., 2005. Structural and functional responses of a
subtropical forest to 10 years of hurricanes and droughts. Ecol. Monogr. 75, 345–361.

Cao, C., Shao, X., Uprety, S., 2013. Detecting light outages after severe storms using the S-
NPP/VIIRS day/night band radiances. IEEE Geosci. Remote Sens. Lett. 10,
1582–1586.

Chambers, J.Q., Fisher, J.I., Zeng, H., Chapman, E.L., Baker, D.B., Hurtt, G.C., 2007.
Hurricane Katrina's carbon footprint on US Gulf Coast forests. Science 318, 1107.

Chew, C., Reager, J.T., Small, E., 2018. CYGNSS data map flood inundation during the
2017 Atlantic hurricane season. Scientific Reports (Nature Publisher Group) 8, 1–8.

Curtis, S., 2008. The Atlantic multidecadal oscillation and extreme daily precipitation
over the US and Mexico during the hurricane season. Clim. Dyn. 30, 343–351.

de Beurs, K.M., Owsley, B.C., Julian, J.P., 2016. Disturbance analyses of forests and
grasslands with MODIS and Landsat in New Zealand. Int. J. Appl. Earth Obs. Geoinf.
45, 42–54.

Elder, R.C., Balling Jr., R.C., Cerveny, R.S., Krahenbuhl, D., 2014. Regional variability in
drought as a function of the Atlantic Multidecadal Oscillation. Caribb. J. Sci. 48,
31–43.

Emanuel, K., 2005. Increasing destructiveness of tropical cyclones over the past 30 years.
Nature 436, 686.

Faust, E., Bove, M., 2017. In: Re, M. (Ed.), The Hurricane Seasons 2017: A Cluster of
Extreme Storms, pp Page. https://www.munichre.com/topics-online/en/2017/12/
hurricane-season-2017#experts (Munich RE).

Fensterer, C., Scholz, D., Hoffmann, D., Spötl, C., Pajón, J.M., Mangini, A., 2012. Cuban
stalagmite suggests relationship between Caribbean precipitation and the Atlantic
Multidecadal Oscillation during the past 1.3 ka. The Holocene 22, 1405–1412.

Gómez, C., White, J.C., Wulder, M.A., 2016. Optical remotely sensed time series data for
land cover classification: a review. ISPRS J. Photogramm. Remote Sens. 116, 55–72.

Healey, S.P., Cohen, W.B., Zhiqiang, Y., Krankina, O.N., 2005. Comparison of Tasseled
Cap-based Landsat data structures for use in forest disturbance detection. Remote
Sens. Environ. 97, 301–310.

Herold, M., Mayaux, P., Woodcock, C., Baccini, A., Schmullius, C., 2008. Some challenges
in global land cover mapping: an assessment of agreement and accuracy in existing 1
km datasets. Remote Sens. Environ. 112, 2538–2556.

Herrera, D., Ault, T., 2017. Insights from a new high-resolution drought Atlas for the
Caribbean spanning 1950–2016. J. Clim. 30, 7801–7825.

Hu, T., Smith, R.B., 2018. The impact of hurricane Maria on the vegetation of Dominica
and Puerto Rico using multispectral remote sensing. Remote Sens. 10, 827.

Imbert, D., 2018. Hurricane disturbance and forest dynamics in east Caribbean man-
groves. Ecosphere 9, e02231.

Jin, S., Sader, S.A., 2005. Comparison of time series tasseled cap wetness and the nor-
malized difference moisture index in detecting forest disturbances. Remote Sens.
Environ. 94, 364–372.

Kam, J., Sheffield, J., Yuan, X., Wood, E.F., 2013. The influence of Atlantic tropical cy-
clones on drought over the eastern United States (1980–2007). J. Clim. 26,
3067–3086.

Kingfield, D.M., de Beurs, K.M., 2017. Landsat identification of tornado damage by land
cover and an evaluation of damage recovery in forests. J. Appl. Meteorol. Climatol.

Fig. 11. Cloud climatology for Landsat WRS-2 P16/R44 and P11/R46 over Cuba.

K.M. de Beurs, et al. Remote Sensing of Environment 229 (2019) 1–13

12

https://www.nhc.noaa.gov/data/hurdat/hurdat2-format-atlantic.pdf
https://www.nhc.noaa.gov/data/hurdat/hurdat2-format-atlantic.pdf
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0010
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0010
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0015
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0020
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0020
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0025
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0025
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0030
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0030
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0035
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0035
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0035
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0040
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0045
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0045
https://www.munichre.com/topics-online/en/2017/12/hurricane-season-2017#experts
https://www.munichre.com/topics-online/en/2017/12/hurricane-season-2017#experts
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0055
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0055
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0055
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0060
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0060
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0065
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0070
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0070
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0070
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0075
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0075
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0085
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0085
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0090
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0090
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0095
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0095
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0095
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0100
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0105
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0105


56, 965–987.
Knutson, T.R., Mcbride, J.L., Chan, J., et al., 2010. Tropical cyclones and climate change.

Nat. Geosci. 3, 157.
Landsea, C.W., Franklin, J.L., 2013. Atlantic hurricane database uncertainty and pre-

sentation of a new database format. Mon. Weather Rev. 141, 3576–3592.
Lin, K.-C., Hamburg, S.P., Wang, L., Duh, C.-T., Huang, C.-M., Chang, C.-T., Lin, T.-C.,

2017. Impacts of increasing typhoons on the structure and function of a subtropical
forest: reflections of a changing climate. Sci. Rep. 7, 4911.

Lobser, S., Cohen, W., 2007. MODIS tasselled cap: land cover characteristics expressed
through transformed MODIS data. Int. J. Remote Sens. 28, 5079–5101.

Long, J., Giri, C., Primavera, J., Trivedi, M., 2016. Damage and recovery assessment of
the Philippines' mangroves following Super Typhoon Haiyan. Mar. Pollut. Bull. 109,
734–743.

Lugo, A.E., 2000. Effects and outcomes of Caribbean hurricanes in a climate change
scenario. Sci. Total Environ. 262, 243–251.

Maxwell, J.T., Ortegren, J.T., Knapp, P.A., Soulé, P.T., 2013. Tropical cyclones and
drought amelioration in the Gulf and southeastern coastal United States. J. Clim. 26,
8440–8452.

Méndez, M., Magaña, V., 2010. Regional aspects of prolonged meteorological droughts
over Mexico and Central America. J. Clim. 23, 1175–1188.

Mildrexler, D.J., Zhao, M., Running, S.W., 2009. Testing a MODIS global disturbance
index across North America. Remote Sens. Environ. 113, 2103–2117.

Miller, S.D., Straka Iii, W.C., Yue, J., et al., 2018. The dark side of hurricane Matthew:
unique perspectives from the VIIRS day/night band. Bull. Am. Meteorol. Soc. 99,
2561–2574.

Negrón-Juárez, R., Baker, D.B., Chambers, J.Q., Hurtt, G.C., Goosem, S., 2014. Multi-scale
sensitivity of Landsat and MODIS to forest disturbance associated with tropical cy-
clones. Remote Sens. Environ. 140, 679–689.

Ortegren, J.T., Maxwell, J.T., 2014. Spatiotemporal patterns of drought/tropical cyclone
co-occurrence in the Southeastern USA: linkages to North Atlantic climate variability.
Geogr. Compass 8, 540–559.

Parker, G., Martínez-Yrízar, A., Álvarez-Yépiz, J.C., Maass, M., Araiza, S., 2017. Effects of
hurricane disturbance on a tropical dry forest canopy in western Mexico. For. Ecol.
Manag. 426, 39–52.

Pielke Jr., R.A., Landsea, C., Mayfield, M., Layer, J., Pasch, R., 2005. Hurricanes and
global warming. Bull. Am. Meteorol. Soc. 86, 1571–1576.

Potter, C., 2014. Global assessment of damage to coastal ecosystem vegetation from

tropical storms. Remote Sensing Letters 5, 315–322.
Rogan, J., Schneider, L., Christman, Z., Millones, M., Lawrence, D., Schmook, B., 2011.

Hurricane disturbance mapping using MODIS EVI data in the southeastern Yucatán,
Mexico. Remote Sensing Letters 2, 259–267.

Román, M.O., Wang, Z., Sun, Q., Kalb, V., Miller, S.D., Molthan, A., Schultz, L., Bell, J.,
Stokes, E.C., Pandey, B., Seto, K.C., 2018. NASA's Black Marble nighttime lights
product suite. Remote Sens. Environ. 210, 113–143.

Rossi, E., Rogan, J., Schneider, L., 2013. Mapping forest damage in northern Nicaragua
after hurricane Felix (2007) using MODIS enhanced vegetation index data. GIScience
& remote sensing 50, 385–399.

Schaaf, C.B., Gao, F., Strahler, A.H., et al., 2002. First operational BRDF, albedo nadir
reflectance products from MODIS. Remote Sens. Environ. 83, 135–148.

Steinskog, D.J., Tjøstheim, D.B., Kvamstø, N.G., 2007. A cautionary note on the use of the
Kolmogorov–Smirnov test for normality. Mon. Weather Rev. 135, 1151–1157.

Tran, T.V., de Beurs, K.M., Julian, J.P., 2016. Monitoring forest disturbances in Southeast
Oklahoma using Landsat and MODIS images. Int. J. Appl. Earth Obs. Geoinf. 44,
42–52.

Trenberth, K.E., Dai, A., Van Der Schrier, G., Jones, P.D., Barichivich, J., Briffa, K.R.,
Sheffield, J., 2014. Global warming and changes in drought. Nat. Clim. Chang. 4, 17.

Vina, A., Henebry, G.M., Gitelson, A.A., 2004. Satellite monitoring of vegetation dy-
namics: sensitivity enhancement by the wide dynamic range vegetation index.
Geophys. Res. Lett. 31.

Wang, F., D'sa, E.J., 2009. Potential of MODIS EVI in identifying hurricane disturbance to
coastal vegetation in the northern Gulf of Mexico. Remote Sens. 2, 1–18.

Wang, F., Xu, Y.J., 2010. Comparison of remote sensing change detection techniques for
assessing hurricane damage to forests. Environ. Monit. Assess. 162, 311–326.

Wang, W., Qu, J.J., Hao, X., Liu, Y., Stanturf, J.A., 2010. Post-hurricane forest damage
assessment using satellite remote sensing. Agric. For. Meteorol. 150, 122–132.

Wang, Z., Román, M.O., Sun, Q., Molthan, A.L., Schultz, L.A., Kalb, V.L., 2018.
Monitoring disaster-related power outages using NASA black marble nighttime light
product. Int. Arch. Photogramm. Remote. Sens. Spat. Inf. Sci. 1853–1856.

World Bank, 2018. World Development Indicators. pp Page. https://data.worldbank.
org/indicator/The World Bank.

Xuan, Z., Chang, N.-B., 2014. Modeling the climate-induced changes of lake ecosystem
structure under the cascade impacts of hurricanes and droughts. Ecol. Model. 288,
79–93.

K.M. de Beurs, et al. Remote Sensing of Environment 229 (2019) 1–13

13

http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0105
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0110
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0110
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0115
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0115
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0120
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0120
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0120
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0125
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0125
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0130
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0130
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0130
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0135
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0135
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0140
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0140
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0140
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0145
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0145
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0150
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0155
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0155
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0155
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0160
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0165
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0165
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0165
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0170
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0170
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0170
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0175
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0180
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0180
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0185
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0185
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0185
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0190
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0190
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0190
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0195
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0200
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0200
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0205
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0205
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0210
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0210
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0210
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0215
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0215
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0225
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0225
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0225
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0230
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0230
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0235
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0235
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0240
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0240
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0245
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0245
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0245
https://data.worldbank.org/indicator/
https://data.worldbank.org/indicator/
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0255
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0255
http://refhub.elsevier.com/S0034-4257(19)30179-8/rf0255

	Hurricane damage detection on four major Caribbean islands
	Introduction
	Study region
	Data
	MODIS NBAR BRDF product – MCD43A4
	Hurricane paths
	Drought data
	Validation data

	Methods
	MODIS disturbance index with temporal standardization
	Testing for normality
	Validation

	Results
	MODIS DI and standardization results
	Disturbance detection: droughts
	Disturbance detection: hurricanes
	Disturbance validation

	Discussion
	Remotely sensed hurricane damage detection
	Hurricane and drought interaction
	Validation of hurricane damage
	Other available data sources

	Conclusions
	Acknowledgements
	References




