

OPTICAL-RADAR SYNERGY FOR WETLAND CHARACTERIZATION AND SURFACE WATER MONITORING

Chengquan Huang ¹, Ben DeVries ^{1,8}, Megan W. Lang ², John W. Jones ³, Irena F. Creed ⁴, Mark L. Carroll ^{5,6}, Jennifer Dungan ⁷, Junchang Ju ⁵, Jeffrey Masek ⁵

¹ Department of Geographical Sciences, University of Maryland, College Mark, MD, USA
² US Fish and Wildlife Service, National Wetlands Inventory, Falls Church, VA, USA
³ US Geological Survey, Eastern Geographic Science Center, Reston, VA, USA
⁴ School of Environment and Sustainability, University of Saskatchewan, Saskatoon, SK, Canada
⁵ Biospheric Sciences Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD, USA
⁶ Science Systems and Applications Inc., Lanham, MD, USA
⁷ NASA Ames Research Center, Moffett Field, CA, USA
⁸ Department of Geography, Environment and Geomatics, University of Guelph

Land Use/Cover Changes, Environment and Emissions in South/Southeast Asia – An International Regional Science Meeting Johor Bahru, Malaysia, 22nd-24th July, 2019

WETLANDS HIGHLY VALUABLE BUT EXTREMELY COMPLEX

- Provide a wide range of ecosystem services
 - Biodiversity, nutrient/pollutants removal,
- Small ones disproportionally more important
 - Out-number larger ones
 - Higher methane concentration
 - More effective in removing nutrients
- but have complex and highly variable water regimes and vegetation communities

HIGH REQUIREMENTS FOR PRODUCING US NATIONAL WETLAND INVENTORY (NWI) DATA

Final Draft Wetlands Mapping Standard

FGDC Wetlands Subcommittee

U.S. Fish & Wildlife Service

Data Collection Requirements and Procedures for Mapping Wetland, Deepwater, and Related Habitats of the United States (version 2)

U.S. FISH & WILDLIFE SERVICE - ECOLOGICAL SERVICES DIVISION OF BUDGET AND TECHNICAL SUPPORT BRANCH OF GEOSPATIAL MAPPING AND TECHNICAL SUPPORT FALLS CHURCH, VA 2204

REVISED AUGUST 2015

January 2009

KEY NWI MAPPING REQUIREMENTS

Table 2. Spatial Resolution Requirements of Base Imagery

	Lower 48 States, Hawaii, & Territories *	Estuarine & Lacustrine Deepwater **	Alaska (Including Deepwaters)	
Resolution	1m	3m	5m	
Scale	1:12,000	1:24,000	1:63,360	

MODIFIERS							
In order to more adequately describe the wetland and deepwater habitats, one or more of the water regime, water chemistry, soil, or special modifiers may be applied at the class or lower level in the hierarchy.							
Water Regime			Special Modifiers	Water Chemistry		Soil	
Nontidal	Saltwater Tidal	Freshwater Tidal		Halinity/Salinity	pH Modifiers for		
					Fresh Water		
A Temporarily Flooded	L Subtidal	S Temporarily Flooded- Fresh Tidal	b Beaver	1 Hyperhaline / Hypersaline	a Acid	g Organic	
B Seasonally Saturated	M Irregularly Exposed	Q Regularly Flooded-Fresh Tidal	d Partly Drained/Ditched	2 Euhaline / Eusaline	t Circumneutral	n Mineral	
C Seasonally Flooded	N Regularly Flooded	R Seasonally Flooded-Fresh Tidal	f Farmed	3 Mixohaline / Mixosaline (Brackish)	i Alkaline		
D Continuously Saturated	P Irregularly Flooded	T Semipermanently Flooded-Fresh Tidal	m Managed	4 Polyhaline			
E Seasonally Flooded/		V Permanently Flooded-Fresh Tidal	h Diked/Impounded	5 Mesohaline			
Saturated			r Artificial Substrate	6 Oligo haline			
F Semipermanently Flooded			s Spoil	0 Fresh			
G Intermittently Exposed			x Excavated				
H Permanently Flooded							
J Intermittently Flooded							
K Artificially Flooded							

CURRENT STATUS OF NWI DATA

Challenges in Alaska

- Base imagery
- Field data collection difficult
- Mapping procedure largely driven by image analysts

EXPLORE USE OF AVAILABLE OPTICAL AND RADAR ASSETS FOR WETLAND MAPPING

Optical

Landsat-8: 16-day revisit

Sentinel-2: 10-day one satellite, 5-day with two satellites

RADAR

Sentinel-1: 12-day revisit one satellite, but current acquisition scenario for two satellites provides 12-day revisit in most areas

METHODS TARGET VEGETATION AND WATER REGIME OF THE CLASSIFICATION SYSTEM

WATER REGIME MAPPING APPROACH

- Automated surface water mapping algorithms
 - Optical algorithm
 - Radar algorithm
- Temporal aggregation to reduce noises

AUTOMATED ESTIMATION OF SUBPIXEL WATER FRACTION (SWF)

DeVries et al. Remote Sensing 2017, 9(8):807

USE OPTICAL RESULTS TO AUTOMATE THE RADAR MAPPING ALGORITHM

Key steps:

- Use historical optical results to identify
 - Permanent water bodies
 - Upland never inundated
- Select water and non-water training samples from the above
- Train machine learning algorithm and use it to produce classification map

Huang, W., DeVries, B., Huang, C., Lang, M., Jones, J., Creed, I., & Carroll, M. (2018). Automated Extraction of Surface Water Extent from Sentinel-1 Data. *Remote Sensing*, 10, 797.

RESULTS FROM INDIVIDUAL OPTICAL-SAR OBSERVATIONS TEMPORALLY DETAILED, BUT VERY NOISY

TEMPORAL AGGREGATION TO REDUCE NOISES

Monthly Median

DEFINE WATER REGIME CLASSES BASED ON MONTHLY COMPOSITES

Seasonally Flooded (C) Surface water is present for extended periods (generally for more than a month) during the growing season, but is absent by the end of the season in most years. When surface water is absent, the depth to substrate saturation may vary considerably among sites and among years.

Intermittent (R4) This Subsystem includes channels that contain flowing water only part of the year. When the water is not flowing, it may remain in isolated pools or surface water may be absent.

Quantitative Rules to Define Surface Water Regime Classes

0 – not detected

- 1 seasonally saturated
- 2 permanently saturated
- 3 intermittently inundated
- 4 seasonally inundated
- 5 seasonally inundated or saturated
- 6 semi-permanently inundated
- 7 permanent open water

Rule-Based Surface Water Regime Map

10-M DATA MUCH BETTER THAN 30-M DATA FOR SMALL WETLANDS

10-M DATA MUCH BETTER THAN 30-M DATA FOR SMALL WETLANDS

SWF (30m)

SWF (10m)

NIR-R-G (10m)

VEGETATION CLASSIFICATION: USE STANDARD MACHINE LEARNING APPROACH

MONTHLY MEDIAN COMPOSITES USED IN VEGETATION CLASSIFICATION

Optical:

- spectral bands
- indices, e.g.:
 - NDVI, NDWI, NDSI

Radar:

- vv, vh backscatter
- indices, e.g.:
 - vh/(vv+vh)

August

VEGETATION CLASSIFICATION ACCURACY STATISTICS

Reference

ц С		NV	SS	SS/FO	EM	EM/SS	Sum	OA
D	NV	3543	363	107	729	265	5007	0.65
U	SS	383	2772	28	691	727	4601	
	SS/FO	230	185	4620	161	278	5474	
	EM	552	626	63	2221	578	4040	
н	EM/SS	292	1054	182	1198	3152	5878	
Д	Sum	5000	5000	5000	5000	5000	25000	

Cell values = # of 10-m pixels

NV: not vegetated SS: scrub-shrub FO: forested EM: emergent OA: overall accuracy WETLAND CLASSIFICATION BY VEGETATION TYPE AND WATER REGIMES

- 36 classes in total
 - 5 veg x 7 water + open water)
- Visually appealing
- Assessment
 - Vegetation: ~65%
 - Water regime: no reference data to assess, but method objective and repeatable
- Products being evaluated by NWI towards developing standard compliant products over Alaska

SUMMARY AND FUTURE OUTLOOK

- Detailed wetland classification possible with synergistic use of optical and radar time series observations
 - Quantitative measure of water regimes
 - Detailed wetland classification that considers both water regime and vegetation type
 - Great improvements in mapping small wetlands using 10 m data instead of 30 m data
- Significantly improved radar capabilities forthcoming
 - RADARSAT constellation sub-weekly, C band
 - NISAR L band, better mapping of woody wetlands
 - Optical-SAR synergy -> much needed spatial-temporal details for highly dynamic aquatic systems
 - Strong technical skills on cloud platforms needed to realize the full potential

THANK YOU!

NASA LCLUC Program **US FWS NWI Program** Free Data Policy NASA HLS Project **Google Earth Engine** NASA NEX

Contact for follow-up discussions

Chengquan (Cheng) Huang cqhuang@umd.edu

