Mapping Post-Socialist Forest-Cover Change in Temperate Russia

Matthias Baumann¹, Mutlu Ozdogan¹, Volker C. Radeloff¹, Kelly Wendland¹, Alexey Yaroshenko², Dmitry Aksenov³, Alexander Prishchepov¹, Tobias Kuemmerle¹ ¹ Department of Forest and Wildlife Ecology, University of Wisconsin-Madison; ² Greenpeace Russia; ³ Transparent World, Moscow mbaumann3@wisc.edu

Introduction

Background

Introduction

THE UNIVERSITY

MADISON

MISCONSIN

- The breakdown of the Soviet Union in 1991 weakened Russia's forest management agencies, rural population declined and agriculture was abandoned. As a result, the temperate forests of European Russia are changing rapidly.
- Yet, compared to well-studied boreal forests, only little is known about past and present dynamics of Russia's temperate forests.

Objective

• Detect forest cover changes in European Russia during the socio-economic transition period from the Soviet Union to present (1985 – 2005) using Landsat TM/ETM+ imagery.

Study site and selection of Landsat footprints

 Two-step selection of Landsat footprints: (1) Stratified random selection of regions, based on average MODIS forest cover. (2) Select Landsat footprint that covered most of the area of the regions.

Figure 1: Study area and selected Landsat footprints.

Acknowledgements: We gratefully acknowledge support for this research by the NASA LCLUC program (Project Nr.: NNX08AK776)

Methods

Support Vector Machines

> Concept

- Separates two classes by fitting a linear hyperplane.
- Kernel functions project training data in higher dimensional space, fit separation hyperplane here and reproject training data and hyperplane into low-

dimensional space. Advantages

- Handles complex classes.
- Often outperforms other classifiers while needing less training samples.
- Successful use in change detection and disturbance mapping (Kummerle et Baumann et al. in prep.)

Change Detection Approach

- Unsupervised classification (ISODATA) of year 2007 scene, classification into 'forest' and 'other land cover'.
- Random sample of ground truth points in 'forest' and 'other land cover' (500 each).
- Label each point, based on visual assessment of the Landsat images. Exclude points that are not constant in time.
- Use training data for each Landsat image.
- Automatic parameterization of SVM to classify the images.
- Automatic accuracy assessment based on crossvalidation (Janz et al. 2007).
- Post-classification comparison and identification of change trajectories.

Table 1: Image acquisition dates and classification accuracies

ime Point	Acquisition date	Sensor	Accuracy	Карра
1985	1986/08/09	TM 5	93.967	0.876
1990	1988/07/21	TM 4	93.558	0.868
1995	1994/09/16	ETM+	91.820	0.833
2000	2001/05/06	TM 5	94.581	0.889
2005	2007/05/15	TM 5	91.718	0.830
		Average	93.129	0.859

Results and Outlook

forest al. 2009,

Results & Discussion

• Deforestation more than expected a-priori.

- Decrease in forest cover before 1990, since increase (Figure 3).
- Forest cover trajectories not uniform in the study region (Figure 2, upper left).
- Deforestation pattern varied, some areas without large changes.
- Year 1995 likely a little bit overestimated due to different month of image acquisition.
- Classification accuracies high (93.13%, Kappa 0.86; Table 1).

Figure 2: Change map 1986-2007 (right) and selected areas detailed (upper left)

Outlook

- 1st year of a 3-year-project.
- region using temporally dense Landsat time series stacks?
- to Landsat satellites?

References:

BAUMANN, M., KUEMMERLE, T., ELBAKIDZE, M., OZDOGAN, M., RADELOFF, V.C., KEULER, N.S., PRISHCHEPOV, A., KRUHLOV, I., AND HOSTERT, P.: Post-socialist farmland abandonment in Western Ukraine. In prep. KUEMMERLE T., CHASKOVSKYY O., KNORN J., RADELOFF V. C., KRUHLOV I., KEETON W. S. & HOSTERT P. (2009): Forest cover change and illegal logging in the Ukrainian Carpathians in the transition period from 1988 to 2007. Remote Sensing of Environment 113:1194-207 JANZ A., VAN DER LINDEN S., WASKE B. & HOSTERT P. (2007): imageSVM - A User-Orientated Tool for Advanced Classification of Hyperspectral Data using Support Vector Machines. In: Proceding of the 5th ERARSeL workshop on Imaging Spectroscopy, Bruges, Belgium.

Figure 3: Forest cover change in the Landsat Scene 1985-2005

• Selective logging might be a problem. Can we detect selective logging in the • What is the ability of other sensors to analyze the same question in comparison