Land Use and Sustainability

NASA LCLUC, Mar. 28, 2011

B. L. Turner II Arizona State University

partially taken from presentation by B. L. Turner II & Eric Lambin (Stanford University & Université Catholique de Louvain) for Research Frontiers in Sustainability Science: Bridging Disciplines and Practice AAAS, Washington, D.C., 2011

Essential Message

- Move beyond "traditional" driver research before land change science is surpassed by other global environmental change initiatives and orientations addressing CHES consequences.
- Critical driver-oriented research remaining is aggregate, comparative, or synthesis in kind requiring systematic-quantitative exploration more so than more remote sensing.
 - Does not negate important monitoring needs.

Example: Incomplete Past Challenge

- Systematic assessment of drivers by spatiotemporal scale
 - How consistent are drivers by these scales?
 - Do areal variations in outcome reflect consistent humanenvironment conditions?
 - Do these conditions reflect interplay of processes operating at different scales.
- Can be addressed via secondary research activities

© Geist & Lambin, What drives tropical deforestation? A meta-analysis of proximate and underlying causes of deforestation based on subnational case study evidence. LUCC Report Series nº 4, 2001

Figure 9 A systemic and generalized view upon the causative pattern of tropical deforestation (N = 152 cases)*

Themes & Issues Underway Linking Land Change Science to Sustainability

- Coupled human-environment systems beyond proximate linkages & with attention to issues of longer term consequences → labeled sustainability, vulnerability, resilience, tradeoff assessment
- 1. Conditions of "rural" (?) economy
- 2. Environmental feedbacks on CHES
- 3. Tradeoffs ecosystem services & human outcomes
- 4. Spatial dimension #3

- Move from land managing unit (household or farm) holding national-regional socioeconomic context constant to *quantitative assessments* of conditions of & change in area/regional economy
- Treat structural changes in rural economy linked to
 - [A] local urban-hinterland dynamics
 - [B] national-regional policies
 - [C] economic globalization

A. Urban Hinterlands

а

• Direct

 Classic hinterland development = sustained or > land change as rural production required for urban areas

DeFries et al. 2010 *Nat.* Geosci.

Linear regression & regression tree

Indirect

 Loss of prime lands to urbanization = expansion of agr & forest loss elsewhere

Seto et al. 2000, Nature.

Farmland lost Pearl River Delta, 1990-96

B. National-Regional Policies

 Changes in land use policy → major shifts in land cover

Rueda 2010: Regional Environmental Science

Fig. 5 Upland forest loss and recovery in the $\it Ejidos$ of the southern Yucatan 1993–2000

- Nonfarm rural sector remittances → same
- Diversify portfolios → same

Schmook + Radel. 2008 Human Ecology

C. Economic Globalization

All recent forest transition countries:

- Additional global land use change embodied in their trade (*i.e.*, net displacement) offsets 22% of their total reforested area
- Total net displacement increasing to >50% in 2003-07
- What are implications for REDD regarding displacement & "virtual" wood

Improve understanding of **environmental feedbacks** on land use (as opposed to mainly land use impacts on ecosystem) & land managers responses

Cover	[P], µg/liter	P input per event, g/ha	Cumulative P input, g/ha per month*	Estimated wet season P inputs, kg/ha+
Open field	24 ± 5ª	4.2 ± 0.5ª	43	0.26
4-yr-old forest	40 ± 5°	6.5 ± 0.5 ^b	72	0.43
20-yr-old forest	59 ± 6°	11.8 ± 1.3 ^e	119	0.71
Mature forest	65 ± 6ª	12.3 ± 1.0 ^e	134	0.81

Table 1. Atmospheric deposition of phosphorus as a function of canopy cover and forest age

Mean \pm SE. Letters a-c indicate significant differences. *For the period June 2 to July 1, 2006.

⁺Cumulative P input \times 6 (average no. of rainy months).

Lawrence et al., PNAS 2007, 104 – P limiting nutrient & reduced with loss in forest cover

> Schneider & Fernando, Biotropica 2010, 42 – invasive bracken follows multi-burned parcels

FIGURE 3. Total land affected by bracken fern from 1989 to 2005 from LMM results.

• Link multi-ecosystem service tradeoffs, especially beyond provisioning services, with human outcomes

Nelson et al. Front Ecol Environ 2009, 7 – to econ. value

Bennett et al. Ecol Letters 2009, 12 – multiple services bundled

 Accounting for kind, amount, shape, pattern of land-use/cover + spatial dynamics – on ecosystems, services, and human outcomes

Local pattern A

PD, ED, LSI ↑ Forest structure ↑ Biomass ↑ Carbon ↑ Biodiversity ↑ P Capture ↑ Bracken fern ↓ Evapotrans. ↑ Farm income ↓ Degrad. fram land. ↑ Req. off farm income ↑

Local patter A affected by area pattern

Biodiversity \downarrow Habitat restriction \downarrow Precipitation \downarrow ? Ecotrourism \downarrow Farm Yields \downarrow

pattern and scalar interactions matter and must be treated more concretely with human outcomes

B Turner 2010. Land Use Policy.

Local pattern B

PD, ED, LSI \downarrow Forest structure \downarrow Biomass \downarrow Carbon \downarrow Biodiversity \downarrow P Capture \downarrow Bracken fern \uparrow Evapotrans. \downarrow Farm income \uparrow Degrad. Farm land \downarrow Req. off farm income \downarrow OF LCLUC SHOULD NOT BE LEFT BEHIND BY AAAS, NAS,
in ICSU, AND INDEPENDENT EFFORTS, e.g.,

SUSTAINABILITY SCIENCE DIVERSITAS RESILIENCE PROGRAMME ON ECOSYSTEM CHANGE & SOCIĘTY

WHICH INCREASINGLY MOVE BEYOND DRIVERS TO ADDRESS CHES CONSEQUENCES, WITH REMOTE SENSING AS ITS BASE