Regionally Specific Drivers of Land-Use Transitions and Future Scenarios

A SYNTHESIS CONSIDERING THE LAND MANAGEMENT INFLUENCE IN THE SOUTHEASTERN US

Co-Authors and <u>Co-Investigators</u>

Virginia Tech: V.A. Thomas, R.H. Wynne, J. Kauffman, E.

Brooks, R.Q. Thomas, P. Williams, S. Cerv

University of Maryland: L. Chini

University of Georgia: R.B. Mei

USDA Forest Service: D. Wear

With contributions from: Zhiqiang Yang, Oregon State

Outline

- Introduction/Background
 - The southeastern US is unique
- Research Goals
 - Land use/cover transitions
 - Management
- Methods
- Early Results
- Lessons Learned to Date

In the southeastern US, forests are dynamic

Two major land change patterns in the region

- Land-use changes
 - Forest $\leftarrow \rightarrow$ Agriculture
 - Forest → Developed (urban)
 - Agriculture \rightarrow Developed (urban)
- Periodic land cover changes reflecting forest management
 - Harvest, regeneration
 - Changes in density/composition
 - Naturally regenerating hardwoods
 → planted pine

2 parallel approaches to modeling past and future land use change

- Globally gridded land-use change products
- Regional, expert driven socioeconomic analysis

- a limiting feature of previous studies has been the treatment of secondary forests as a single land use
 - Iumping passively managed or unmanaged forests with those that are intensively managed

Overall project goal

 To develop regionally refined land-use transition matrices that consider the economic structure of land management and land use decisions, incorporating forest management

GLM Classes	Expanded Land-use Types	Relevance to the Southeast
Urban	Urban	Major driver of change
Crop functional types	Crop functional types	Major driver of change
Managed pasture	Managed pasture	Relevant class
Rangelands	Rangelands	Not a major class
Primary non-forest	Primary non-forest	Not a major class
Secondary non-forest	Secondary non-forest	Not a major class
Primary forest	Primary Forest	Only remnants remaining
Secondary forest	Passive/low intensity mixed forest	Non-industrial mixed
	Passive/low intensity needle-leaf forest	Non-industrial pine
	Passive/low intensity broad-leaf forest	Eastern hardwoods
	Medium intensity needle-leaf forest	Industrial pine forests
	Medium intensity broad-leaf forest	Not a major class
	High intensity needle-leaf forest	Genetic modifications
	High intensity broad-leaf forest	Not a major class.
	Short rotation needle-leaf forest	Biomass for energy. Not
	Short rotation broad-leaf forest	currently a major class.
		VII VIRGINIA TECH.

Year One Accomplishments

Study area (USDA Forest Service, Region 8)

Compilation of harvesting dataset

FOR CALIBRATION, VALIDATION, AND BEYOND

VDOF Harvest Records

By law, all harvests in Virginia must be reported and inspected

VDOF maintains a database of harvests and ancillary information

- Since 2014
 - 8127 harvests in Virginia
- 43590 records in the database

International Paper harvest records

- Prior to 2007, when they divested their holdings
 - Over 130,000 harvest records and ancillary data

 Over 170,000 records in combined validation set.

Mapping Moderate Intensity Forest Management

WITH MULTITEMPORAL LANDSAT

Remote Sensing Goal

Expand the classification of forests in the SE to <u>include</u> <u>medium intensity</u> management

- Passive/low intensity = nonindustrial forests with minimal management activities
- Medium intensity management = common silvicultural practices
 - controlling for planting density, thinning, fertilization and weed control
- High intensity management = genetic modification

Synthesis of Initial Management Classes

In VDOF Database

Management Intensity

- Commercial Selection _____ Low/Passive
- Thinning
- Total Harvest
- **From Airphoto Interpretation**
 - Persistent Forest

Random-generated points within forested parcels that have never been recorded in VDOF database

Low/Passive

Moderate

Total Harvest

Could be either

 Either broadleaf or needleleaf

Vetted Harvest Records for late 2015-2017 18

Moderate intensity managed forests (Thins) have multiple NLCD classes

Are Harmonic Regression Coefficients Good Predictors of Management Classes?

- Includes temporal information for training period
- Has been shown in other projects to be valuable for forest inventory
- Serves as the 'base' for multiple change detection algorithms
 - CCDC & EWMA CD

Harmonic Regression, Brooks, et al, 2012 and Brooks, et al., 2014

Harmonic Regression Computed for Region 8

> Single harmonic calculated for region for 2009-2011 and 2014-2016

(Yang 2017)

24

Management class accuracy within pines

 Random Forest Classification with cross validation

 Overall Accuracy 89%

Needs additional persistent forest

Landsat-derived LAI by management class for regional projections of productivity and fertility

Synthesis of RS with Ecological Forecasting

Synthesis and Intercomparisons

- Synthesis of
 - Landsat classifications
 - At GLM scale
 - Southern Forest Futures
 - At GLM scale
 - GLM Land Use transition matrices
- Establish a baseline to quantify the impact of regionally-specific land use transition matrix.

GLM Class	NLCD Class	
Urban	21 Developed, Open Space	
	22 Developed, Low Intensity	
	23 Developed, Medium Intensity	
	24 Developed High Intensity	
Crop Functional Types	82 Cultivated Crops	
Managed Pasture	81 Pasture/Hay	
Rangelands	71 Grassland/Herbaceous	
Primary Non-Forest	31 Barren Land (Rock/Sand/Clay)	
Secondary Non-Forest	11 Open Water	
	12 Perennial Ice/Snow	
	51 Dwarf Scrub	
	52 Shrub/Scrub	
	72 Sedge/Herbaceous	
	73 Lichens	
	74 Moss	
	95 Emergent Herbaceous Wetlands	
Secondary Forest	41 Deciduous Forest	
	42 Evergreen Forest	
	43 Mixed Forest	
	90 Woody Wetlands	

Next steps

- Complete assessment of USGS Gap, Global Forest Change, and NLCD TCC products to supplement the base classification of pines to include thins.
- Applying the LAI models across management classes
- Upscaling the Southern Forest Futures projections to the GLM to finalize the baseline comparison between the GLM, NLCD, and Southern Forest Futures land use transition matrices.
- Completing the mapping of forest management intensity across the Southeast over time.
- Incorporating forest management and risk into the economic projections.

Questions?

V. Thomas, thomasv@vt.edu Forest Resources & Environmental Conservation Virginia Tech

Acknowledgements:

NASA LULUC Zhiqiang Yang, Oregon State Virginia Department of Forestry International Paper

