International Meeting on Land Cover and Land Use Changes 2019 | Universiti Teknologi Malaysia (UTM) & National Aeronautics and Space Administration (NASA), USA | Johor Bahru, Johor | July 23, 2019 (Invited Talk)

Is Precision Agriculture the Game Changer in Malaysia?

Siva K Balasundram, PhD

Associate Professor

Department of Agriculture Technology

Country Representative

Member, Board of Trustees

Was Thomas Malthus correct?

Human population will increase in a geometric ratio (exponential) while food production (for human subsistence) will increase in an arithmetic ratio (linear)

- Essay on the Principle of Population (1798)

Today, after more than 200 years ...

Agriculture is being challenged on two fronts:

Dominant shift towards monoculture (Fatimah, 2018)

Malaysia: Land use by crops (%) and total hectarage (mn ha), 1960-2015

Industrial crops are susceptible to cycles, demand for food is ever increasing (Fatimah, 2018)

Income potential ... (based on 2018 calculations)

Precision agriculture

- A management practice applied at the right rate, right time and the right place
- Field sub-region management
 - nutrients
 - drainage/irrigation
 - pests and diseases
 - tillage and seeding

Individual field focus⇒ spatial variability⇒ temporal variability

Spatial variability

Yin, X. 2016. Geostatistical analyses of field spatial variability of cotton yield. *Journal of Geoscience and Environment Protection*, 4: 75-87

Temporal variability

⇒ differences across time/season

Corn grain yield - 1997

Field M1 (30 ac.), Davis-Purdue Ag. Center

Corn grain yield - 1998

Field M1 (30 ac.), Davis-Purdue Ag. Center

High to low

Why is precision agriculture practical?

	Benefit Occurs	No Benefit Occurs
ACT	Correct action	Type II error: Loss caused
DON'T ACT	Type I error: Lost opportunity	Correct inaction

⇒ Precision agriculture minimizes Type I & Type II errors

Possible outcomes from using precision agriculture

- ⇒ Higher yield with the same level of inputs
- ⇒ The same yield with reduced inputs
- ⇒ Higher yield with reduced inputs

Mapping out the bottom line!

Key challenge for precision agriculture

□ Technology structure

- Precision agriculture is information-intensive and not embodied knowledge (e.g. hybrid seeds, GMO)
 - need to transform precision agriculture into embodied knowledge so that end-users can understand better, without having to understand the complex science behind it

Balasundram, S.K. 2016. Selected precision agriculture studies in oil palm: A 10-year summary. *Revista Palmas*, 37(1): 243-266. (In Spanish)

Technological domain	Scope of investigation	Keywords
Geo-spatial modeling	FFB yields Leaf and soil nutrients Fertilizer trials Soil organic carbon	Spatial variability, management zones, nearest-neighbor analysis, operational zones
Decision support system	Oil yield Oil quality	FFB harvesting, image processing, surface color, degree of bleachability index
Remote and proximal sensing	FFB yields Disease detection Oil quality Stand density	Vegetation indices, spectral reflectance, sensor, geographical information system, Google Earth

Our recent outputs: Crop monitoring

Our recent outputs: Landuse and hydrological modeling

Journal of Water Resource and Protection, 2012, 4, 870-876 http://dx.doi.org/10.4236/jwarp.2012.410102 Published Online October 2012 (http://www.SciRP.org/journal/jwarp)

Applied Spatial Analysis and Policy March 2016, Volume 9, <u>Issue 1</u>, pp 1–19

Environmental Ear February 2015, \

Original Articles

SWAT-based hydro land-use scenarios

Modélisation hydro d'utilisation des so modèle SWAT

Hadi Memarian, Siva K. Balasundram . Kari

Pages 1808-1829 | Received 17 May 2012, Accepted 14 Aug 2013, Accepted a

Journal of Applied Remote Sensing: Journal Home Current Issue All Issues

Journal of Applied Remote Sensing | Volume 7 | Issue 1 | Research Papers >

Computers and Electronics in Agriculture 93 (2013) 98-110

Contents lists available at SciVerse ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Agriculture Land Suitability Evaluator (ALSE): A decision and planning support tool for tropical and subtropical crops

Ranya Elsheikh a, Abdul Rashid B. Mohamed Shariff a, Fazel Amiri a,b,*, Noordin B. Ahmad c, Siva Kumar Balasundram^d, Mohd Amin Mohd Soom^e

Stress factors under investigation:

nutrient imbalance → pest infestation → water flow

Our ongoing international collaboration

Digital farming for citrus orchards

Robotics for Agriculture, Acceleration by simulation

An international collaborative research

Selected publications

- 1. Shamshiri, R. R., Weltzien C, Hameed, I. A., Yule I. J., Grift T. E., Balasundram S. K., Pitonakova L., Desa A., and G. Chowdhary, 2018. Research and Development in Agricultural Robotics : A Perspective of Digital Farming, Int. J. of Agric & Biol Eng. 11 (4): 1-14. doi:10.25165/j.ijabe.20181104.4278. Q2. IF:1.267 (Invited) [PDF]
- 2. Shamshiri, R. R., Hameed I. A., Pitonakova L., Weltzien C, Balasundram S. K., Yule I. J., Grift T. E., and G. Chowdhary. 2018. Simulation Software and Virtual Environments for Acceleration of Agricultural Robotics: Features Highlights and Performance Comparison. Int. J. of Agric & Biol Eng. 11 (4): 15-31. doi:10.25165/j.ijabe.20181104.4032. Q2. IF:1.267 (Invited) [PDF]
- 3. Shamshiri, Redmond R., Ibrahim A. Hameed, Manoj Karkee, and Cornelia Weltzien. 2018. Robotic Harvesting of Fruiting Vegetables: A Simulation Approach in V-REP, ROS and MATLAB. INTECH: Automation in Agriculture-Securing Food Supplies for Future Generations, Page 81-105. ISBN: 978-953-51-3874-7. DOI: 10.5772/intechopen.73861 [PDF]

Talks and visits

- Robotic Harvesting of Fruiting Vegetables: "Acceleration by Simulation". Acceleration workshop, Glas-40 (Invited as keynote speaker). 11-12 Sep, 2017. TU Delf, The Netherlands" [Video] [Presentation]
- Leibniz Institute for Agricultural Engineering and Bioeconomy, Potsdam, Germany, Feb 2018-Aug 2018
- Wageningen UR, Plant Research International, The Netherlands, Aug 2015-Feb 2016
- · 2nd live demo of sweet pepper harvesting robot, Proefstation voor de Groenteteelt in Sint-Katelijne-Waver, Belgium, September 12th, 2018

International Contributors

UPM, Malaysia

Key areas for further work

1. Crop nutrition

Nutrient balance index

2. Pest and disease control

Early detection in a non-destructive way

3. Harvesting/Crop recovery

- Optimum ripeness detection protocol
- Optimized quality

Other areas that require further work

- Mapping of carbon sequestration potential in different oil palm ecosystems
- Development of sustainability indicators that include spatial and temporal variability
- Development of appropriate spatial scale to monitor shifts in yield maxima
- Geospatial modeling of water flow in sloping land
- Improvement of data processing methods, e.g. drone data should be in sync with spatio-temporal data

Evolution of precision agriculture

The first 25 years (1990-2015): Efficient farm

The next several years (2015-?): Connected farm

Towards a connected farm ...

Source: Accenture (2015)

Where are we going with all these?

Climate-smart agriculture

• Efficient • Cost-effective • Practical • Pollution free

Making the crop fit the environment (always changing) → resilience

instead of the old way of changing the environment to fit the crop

Where are we going with all these? ... (2)

Internet of Things (IoT) in Agriculture

- → A means of connecting systems so as to allow an integrated, multidimensional view of farming activities, enabling deeper understanding on how the whole ecosystem works
 - Smart devices than can collect and send data in real time to increase speed for decision making
 - Big data

