Land Cover and Land Use Change in Temperate East Asia: Impacts on Carbon Fluxes and Land Productivity

Dennis Ojima¹ and Xiangming Xiao²

¹Natural Resource Ecology Laboratory, Colorado State University, Fort Collins, CO

²Institute for the Study of Earth, Oceans and Space,

University of New Hampshire, Durham, NH

2001 - 2004

NASA LCLUC Science Meeting, January 19-22, 2004

MAJOR DRIVERS

- ECONOMIC LIBERALIZATION
- · URBAN GROWTH
- · POPULATION GROWTH
- ENVIRONMENTAL POLICY
- · CLIMATE CHANGE

Organization chart for the presentation

	Rangelands million ha	Croplands million ha	Collectivization	Privatization
Mongolia	123	1.35	Late 1950's	Early 1990's
Inner Mongolia	63	8	In 1950's	Early 1980's
Central Asia	246	43	In 1930's	Mid 1990's

Population in Mongolia

Herdsman and Households in Mongolia

Herdsmen Herdsmen's households

Gross Agricultural Output in Mongolia

Livestock Crops

National Land Cover Dataset in 1995/1996, 1999/2000, -- China

from classification of Landsat TM and ETM+ images

% land cover with 1-km pixels, 25 land cover types

From LIU, Jiyuan, Institute of Geographical Science and Natural Resources, Chinese Academy of Sciences, Beijing, China

Data and Observation

Land use and land cover change

land cover conversion ----- grassland \rightarrow cropland

Xilin River Basin, Inner Mongolia, China (a) Landsat TM image on 7/31/1987

(b) Landsat TM image on 8/27/1997

Biome distribution and mean NPP (Courtesy of Jeff Hicke, NREL)

NPP trends by IGBP biome (Courtesy of Jeff Hicke, NREL)

Mean NPP trend per unit area

NPP trend across biome area

Improved vegetation indices datasets

Greenness-related vegetation indices

NDVI = (NIR - RED) / (NIR + RED)

 $EVI = G \times (NIR - RED) / (NIR + C1 \times RED - C2 \times BLUE + L)$

Water-related vegetation index (Land Surface Water Index)

LSWI = (NIR - SWIR) / (NIR + SWIR)

Global datasets: from VEGETATION sensor onboard SPOT-4 satellite that has 4-spectral bands (blue, red, NIR, SWIR) and 1-km spatial resolution. 10-day composites from 4/1998 – 12/2002 (available)

Regional datasets for Asia: from MODIS 8-day composites (MOD09A1) 8-day composites from 1/2002 – 12/2002 (available).

Data and Observation

(a) False color composite (NIR-SWIR-Red), July 1-10, 2000

(c) EVI, July 1-10, 2000

Data and Observation

Spatial patterns and temporal dynamics of **Enhanced Vegetation Index (EVI)** at the global scale

starting at 4/1-10, 1998, (strong La Nina in 1998/1999, after strong El Nino in 1997/1998)

Theory and Hypothesis

Hypothesis #1.

Advanced vegetation indices (e.g., EVI, LSWI) will improve land cover characterization, e.g., phenology, classification.

1.0 Vegetation indices and FAPAR 0.8 0.6 0.4 0.2 EVI Howland Forest NDVI (one MODIS pixel) – ← FAPAR 0.0 1/1/01 5/1/01 5/1/02 9/1/01 1/1/02 9/1/02 1/1/03 Time (8-day interval)

Greenness and LAI EVI, NDVI

Hypothesis #1 (continue).

Advanced vegetation indices (e.g., EVI, LSWI) will improve land cover characterization, e.g., phenology, classification.

Leaf and canopy water content LSWI

Hypothesis #1

Advanced vegetation indices (e.g., EVI, LSWI) will improve land cover characterization, e.g., phenology, classification.

Land cover classification in Northeastern China

Time series input data: NDVI + LSWI versus NDVI

Xiao, X., et al., 2002, Remote Sensing of Environment, 82, 335-348

Regional-scale comparison between NDVI and EVI

Xiao, X., et al., 2003, Remote Sensing of Environment, 84, 385-392.

Land cover classification in temperate East Asia Time series input data: EVI + LSWI versus NDVI Boles, S., Xiao, X., *et al.*, 2004, Remote Sensing of Environment, (in revision)

Hypothesis #2.

Advanced vegetation indices (e.g., EVI, LSWI) will improve modeling of land productivity.

Model structure of Vegetation Photosynthesis Model (VPM)

Major advantages: (1) VPM model does not need a soil water model, precipitation and vapor pressure deficit, which have large spatial heterogeneity, e.g., soil depth, soil texture.

(2) VPM model is largely driven by satellite-data and serves as an independent diagnostic tool, e.g., for evaluating process-based biogeochemical models.

Validation of VPM for evergreen needleleaf forest

site-specific CO₂ flux and climate data (from David Hollinger)

Xiao, X., et al., 2003, Remote Sensing of Environment, (in press)

Xiao, X., et al., 2004, Journal of Geophysical Research - Atmosphere, (in revision)

Validation of VPM model for deciduous broadleaf forest

site-specific CO₂ flux and climate data (from Stephen Wofsy)

Xiao et al., 2003, Remote Sensing of Environment, (in review)

Validation of VPM model for evergreen tropical forest

site-specific CO₂ flux and climate data (from Saleska, S., et al., 2003)

Time (10-day interval)

Model and Analysis

Global simulation of Vegetation Photosynthesis Model

Model and Analysis

Global simulation of Vegetation Photosynthesis Model

Future actions

- 1. Continue validation of VPM model for non-forest biomes (e.g., grassland, shrubland, tundra);
- 2. Regional simulations of VPM model for temperate East Asia Diagnostic analysis;
- 3. Integration of VPM model and Century model --- Diagnostic analysis;
- 4. Regional simulations of Century model for future scenarios Prognostic analysis.

SUMMARY OF PROGRESS

- Partnerships with Mongolian Ministry of Nature and Environment and with Chinese Academy of Sciences
- Ecosystem parameterization of major land use systems
- Land use change analyses through AVHRR, SPOT-Vegetation, MODIS, and TM
- Regional Land Productivity relative to climate variability and land use change
- Specific products associated with desertification and degradation of land resources