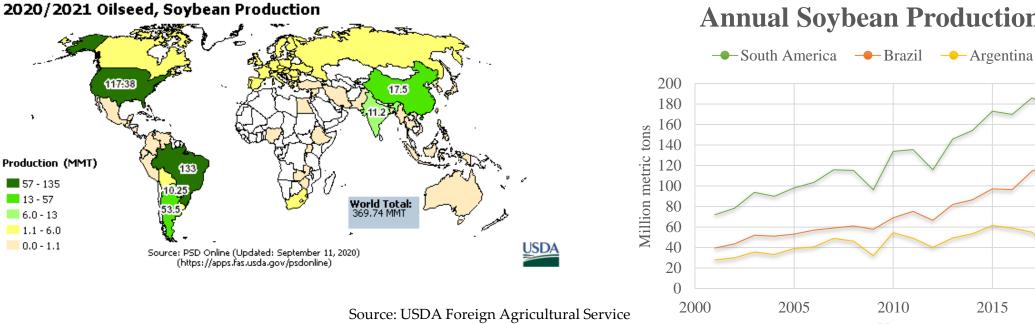


Soybean Expansion in South America: Quantifying Historical Land-Use Change, Modeling Socioeconomic Drivers and Projecting Future Trajectories

Xiao-Peng Song¹ (PI), Laixiang Sun², Matthew Hansen², Marcos Adami³, Haijun Li¹, Yu Xin²

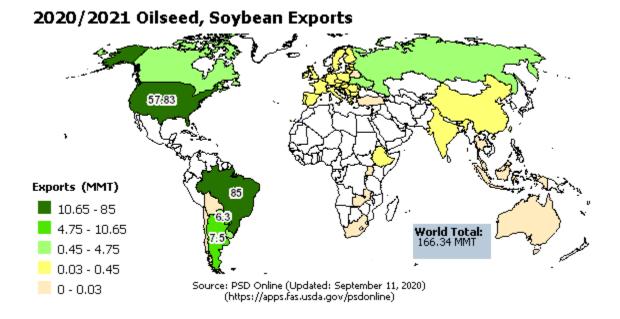

¹Texas Tech University, Lubbock, TX ²University of Maryland, College Park, MD ³National Institute for Space Research (INPE), Belem, Brazil ^{*}Email: <u>xiaopeng.song@ttu.edu</u>

NASA Land Cover/Land Use Change Virtual Science Team Meeting, October 21st, 2020

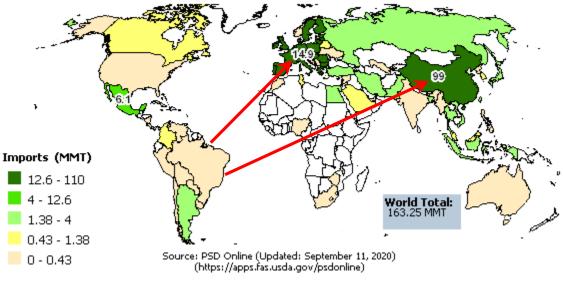
Rapid Soybean Expansion in South America

53% of world's soybean production is in South America

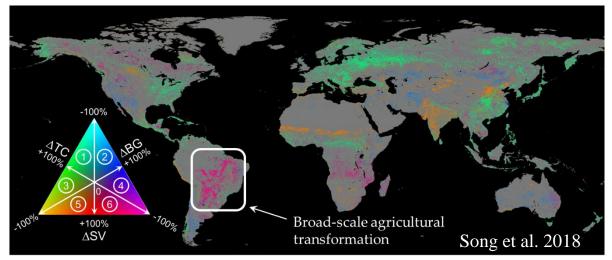
Soybean production in South America nearly tripled from 2000 to 2020



Annual Soybean Production


Robust International Drivers

Exports 50% of USA soybean production 60% of Brazil soybean production


Imports 60% of USA soybean exports to China 80% of Brazil soybean exports to China

2020/2021 Oilseed, Soybean Imports

Consequences and Environmental Policies

Global land change from 1982 to 2016

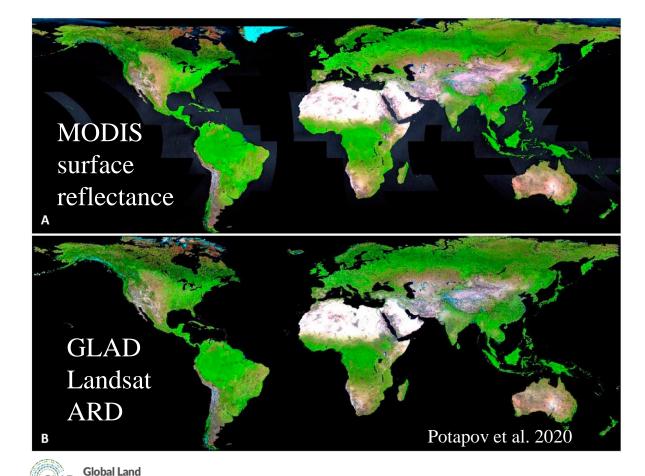
TC: tree canopy cover; SV: short vegetation cover; BG: bare ground (BG) cover

- Loss of natural vegetation
 - Amazon, Atlantic Forests, Cerrado, Chaco, Pantanal
- GHG emissions
- Loss of biodiversity and ecosystem services
- Alters regional climate

Amazon Soy Moratorium

A voluntary agreement signed by traders who committed not to buy soybeans sowed on deforested lands in the Brazilian Amazon after 2008.

• • • •


Project Objectives

- Overall Goal
 - Achieve a comprehensive understanding of soybean expansion in South America in the past and future.
- Specific objectives
 - Characterize the spatiotemporal patterns of soybean expansion at 30m resolution, annually, and over a long period (1985-2020).
 - Investigate the economic drivers of soybean expansion with a spatially and temporally explicit econometric model.
 - Project a range of scenarios of future soybean expansion under different socioeconomic, policy, technological and climate conditions.

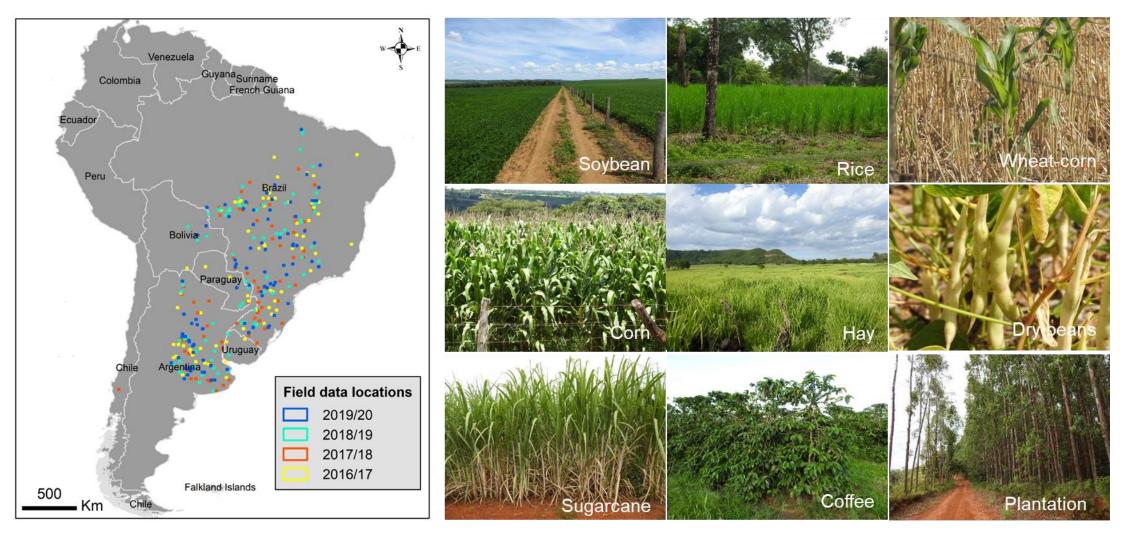
Mapping Soy Expansion Using Satellite data

(Blue-NIR)/(Blue+NIR) [BN] (Green-Red)/(Green+Red) [GR]

(Green-NIR)/(Green+NIR) [GN] (SWIR1-SWIR2)/(SWIR1+SWIR2) [SWSW] Spectral variability index [SVVI]

Analysis & Discovery

Statistics Spectral data and indices Amplitudes* Minimum [min] max - min Spectral Bands Maximum [max] smax - smin Blue Second lowest value [smin] av50smax - avsmin50 Green Second highest value [smax] av75max - avmin25 Red Median [median] NIR Average between smin and Q2 [avsmin50] SWIR1 Average between Q2 and smax [av50smax] SWIR2 Average between min and Q1 [avmin25] Average between Q3 and max [av75max] Derived Indices Average between Q1 and Q3 [av2575] (NIR-Red)/(NIR+Red) [RN] Average of all values [avminmax] (NIR-SWIR1)/(NIR+SWIR1) [NS1] Average of all values except min and max (Blue-Green)/(Blue+Green) [BG] [avsminsmax] (Blue-Red)/(Blue+Red) [BR]

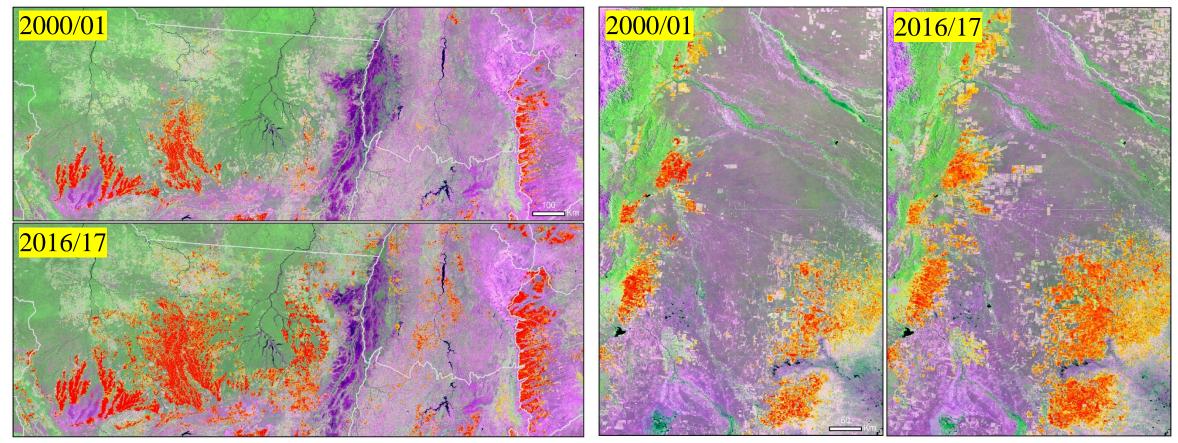

Phenological metrics

Ranking of 16-day observation time-series by the value of corresponding variable

Ranking of 16-day observation time-series by spectral reflectance or index value

Spectral data	Corresponding variable	Statistics	Amplitudes*
	22	Minimum [min]	max - min
Blue	(NIR-Red)/(NIR+Red) [RN]	Maximum [max]	smax - smin
Green	Spectral variability index [SVVI]	Second lowest value [smin]	av50smax - avsmin50
Red	Brightness temperature [LST]	Second highest value [smax]	av75max - avmin25
NIR		Average between smin and Q2 [avsmin50]	
SWIR1		Average between Q2 and smax [av50smax]	
SWIR2		Average between min and Q1 [avmin25]	
		Average between Q3 and max [av75max]	

Calibration & Validation



Preliminary Mapping Results

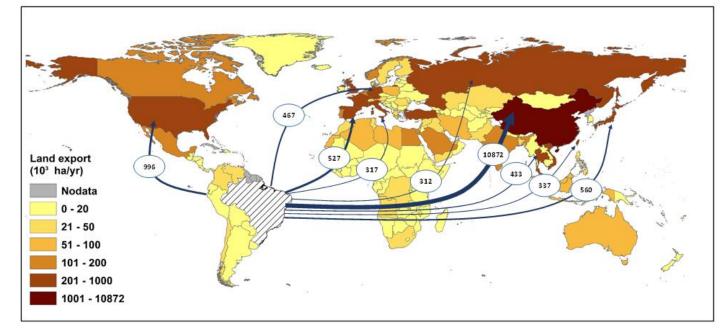
Amazon & Cerrado

Soybean

Chaco

Economic Land-use Change Analysis

- Model soybean expansion using an econometric land-use change model (eLUC)
 - Risk-neutral landowner would choose the land-use type with the highest utility.
 - Data on competing land uses (soybean, non-soybean cropland, pasture and forest) are obtained from remote sensing-based map products.
 - Solve a logit-linear transformed share model using OLS (Ay et al. 2017).

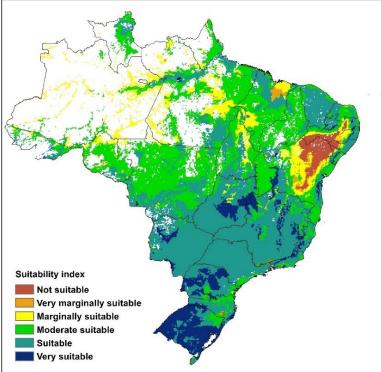

•
$$S_{gtl_1} = \frac{exp(S_{g(t-1)l_1}\beta_{l_1}^S + R_{gtl_1}\beta_{l_1}^R + B_{gtl_1}\beta_{l_1}^B)}{\sum_{l_0=1}^L exp(S_{g(t-1)l_0}\beta_{l_0}^S + R_{g(t-1)l_0}\beta_{l_0}^R + B_{g(t-1)l_0}\beta_{l_0}^B)}$$

• Where, S_{gtl_1} is the land-use share vector of land-use type l_1 in grid cell g at time t, a portion of which is converted from land-use type l_0 at time t-1.

Multi-Regional Input-Output Analysis

- Employ the MRIO analysis to establish the tele-connection (e.g. China consumption and Brazil production) through the whole economic supply chain.
 - Global Trade Analysis Project (GTAP) data, in which soybean is an independent sector.
 - Extend MRIO with land-use footprint (Yu et al. 2013).

Virtual soybean land export flow from Brazil to the rest of the world in year 2014


Global Agro-ecological Zones Analysis

• Employ GAEZ to simulate the production potentials of soybean and other crops under different climate conditions and agricultural management levels (Fischer et al. 2012).

Simulation factors

Climate Soil Cultivar Planting and harvest dates Irrigation Fertilizer Pesticide CO₂ fertilization GAEZ-simulated soybean suitability under rainfed condition in 2030s.

Thank you!

xiaopeng.song@ttu.edu