

Policy, Market, and Climate Change Impacts on Maize Production in Mexico

Meha Jain

Assistant Professor
School for Environment and Sustainability
University of Michigan

Project Team

Vijesh Krishna Lead Economist Adoption & Impacts CIMMYT-Mexico

Amy Lerner
Assistant Professor
Urban Studies &
Planning
UC San Diego
(formerly at UNAM
Mexico)

Nishan Bhattarai Research Scholar University of Michigan

• Climate change has negative impacts on agricultural production, especially maize

- Climate change has negative impacts on agricultural production, especially maize
- Mexico is the seventh largest producer of maize worldwide, and maize is an important staple crop for regional food security

- Climate change has negative impacts on agricultural production, especially maize
- Mexico is the seventh largest producer of maize worldwide, and maize is an important staple crop for regional food security
- There have been significant changes in maize landscapes across Mexico over the last few decades

- Climate change has negative impacts on agricultural production, especially maize
- Mexico is the seventh largest producer of maize worldwide, and maize is an important staple crop for regional food security
- There have been significant changes in maize landscapes across Mexico over the last few decades
 - Abandonment and adoption
 - Increased irrigated area
 - Changes in management: tillage, sowing date, variety

- Climate change has negative impacts on agricultural production, especially maize
- Mexico is the seventh largest producer of maize worldwide, and maize is an important staple crop for regional food security
- There have been significant changes in maize landscapes across Mexico over the last few decades
- To date it remains unclear why such changes have occurred, and how climate change will impact these new maize landscapes in the future

Main Research Questions

• Q1: How have maize landscapes transitioned in Mexico from 2000 to the present?

Q1: Maize Transitions

- 1. Maize abandonment/adoption
 - 2. Shifting sowing date
 - 3. Changing variety planted
 - 4. Altering irrigation practices

Main Research Questions

• Q2: How have market, weather, and policy factors driven these transitions? What is their relative importance?

Main Research Questions

 Q3: How do these transitions influence projected climate change impacts on maize landscapes? Are these transitions adaptive or maladaptive considering future yield and food production?

Study Region

- 7. Guanajuato (medium scale, partially irrigated)
- 3. Mexico (medium-scale, mostly rainfed)
- 4. Chiapas (smallholder, mostly rainfed)

*Each number represents the state's rank in maize production.

• We will use satellite derived long-term datasets on farmer decisionmaking to examine maize transitions through time

Data Type	Variable	Data Source	Resolution (2000-present)
	Maize area	Census, SIAP	Municipality; Seasonal
		Landsat-MODIS	30 m; every 5 years
		(harmonized	
		Landsat-Sentinel-2)	
Q1. Agricultural Transitions	Sowing date	Landsat-MODIS	30 m; Seasonal
		(harmonized	
		Landsat-Sentinel-2)	
	Varietal length	Landsat-MODIS	30 m; Seasonal
		(harmonized	
		Landsat-Sentinel-2)	
	Tillage practice	Sentinel 1, Sentinel	30 m; Seasonal
		2, Landsat, MODIS	
	Evapotranspiration	Landsat-MODIS	60 - 250 m (depending on
			data availability); Seasonal

Landsat-MODIS fused data product

• We will couple these long-term remote sensing datasets with price, weather, and policy datasets in econometric panel regressions to identify the causal drivers of agricultural transitions

Data Type	Variable	Data Source	Resolution (2000-present)
Q2. Drivers	Maize prices	Census, SNIIM	State; Weekly
of	Rainfall & Temperature	CHIRPS, CPC	0.05 - 0.5 degrees; Daily
Transitions	Policies	Literature Review	State to National; Annual

 We will then use future climate projections and crop model simulations parameterized with agricultural transition data to identify the impacts of future climate change

Data Type	Variable	Data Source	Resolution (2000-present)
Q3. Future Climate Projections	Rainfall & Temperature	CMIP6	Varying (>= 0.25 degrees); daily

• We will conduct household-level fieldwork to understand the drivers of farmer decision-making and collect ground truth information for our remote sensing analysis

Data Type	Variable	Data Source	Resolution (2000-present)
Q1 & Q2: Field Data	Drivers of decision-	Household survey	Household; one time step
	making	data	
	Ground truth data	Household survey	Household; one time step
		data	

• Determine how resilient current maize systems are to future climate change

- Determine how resilient current maize systems are to future climate change
- Determine whether there are any adaptive strategies that may help farmers enhance their resilience to future change

- Determine how resilient current maize systems are to future climate change
- Determine whether there are any adaptive strategies that may help farmers enhance their resilience to future change
- Identify the potential barriers to climate change adaptation

- Determine how resilient current maize systems are to future climate change
- Determine whether there are any adaptive strategies that may help farmers enhance their resilience to future change
- Identify the potential barriers to climate change adaptation
- Produce high-resolution maps on sowing date, maize varietal length, tillage practices, and irrigation

Thanks!

mehajain@umich.edu

