

Crop yield assessment and mapping by a combined use of Landsat-8, Sentinel-2 and Sentinel-1 images

S. Skakun

University of Maryland, College Park MD, USA

Content

- Update on winter wheat yield mapping in Ukraine
 - Adding 2019 validation
 - Adding Gaussian processes
 - Combining optical + SAR data
- Maize and soybean yield assessment at field scale in Iowa (2018-2019)
 - Using Planet data
 - Using HLS data

Project overview

- Crop yield assessment and mapping by a combined use of Landsat-8, Sentinel-2 and Sentinel-1 images
 - PI: S. Skakun (UMD)
 - Co-ls: J.-C. Roger, B. Franch, N. Kalecinski (UMD)
 - PhD student: A. Santamaria, M.G.L. Brown (UMD)
 - Collaborators:
 - **D. Johnson** (USDA-NASS)
 - N. Kussul (Space Research Institute, Ukraine)
 - E. Copati (The Buenos Aires Grain Exchange, Argentina)
 - S. Veron, D. de Abelleyra (Instituto Nacional de Tecnologia Agropecuaria, Argentina)
 - C. Champagne (Agriculture and Agri-Food Canada)
 - + JECAM
 - Objective:
 - to develop a new algorithm and products for agriculture monitoring, namely crop yield assessment and mapping, by combining moderate spatial resolution images acquired by Landsat-8, Sentinel-2 and Sentinel-1/SAR remote sensing satellites
 - Crops:

Crop yield assessment methodology

Methodology (for winter wheat)

Crop yield assessment at regional scale

Multi-source image time series

Skakun, S., et al. (2019). Winter Wheat Yield Assessment from Landsat 8 and Sentinel-2 Data: Incorporating Surface Reflectance, Through Phenological Fitting, into Regression Yield Models. *Remote Sensing*, *11*(15), 1768.

Cross-validation

- 2016-2019
- Regional scale
- Two models:
 - Linear with L2 regularization, and
 - Gaussian Process (GP)
 - Kernel ~ Const * RBF + WhiteNoise

- Defined a specification for wheat yields:
 - spec = 0.06 + 0.06 * yield [t/ha]
 - E.g. <u>4.0 ± 0.3 [t/ha]</u>

Combining optical + SAR

- Optical and SAR indices show similar temporal behavior on the growing season.
 - Optical: Difference Vegetation Index (DVI) from HLS
 - SAR: Gamma-nought VH/VV (γT0) from Sentinel-1

Combining optical + SAR

Temporal profiles of DVI from HLS and SAR-derived

Ground data: crop yields at field scale

Field scale yields for corn and soybean (Hamilton County, IA, USA). Provided by Iowa State University

Results: PlanetScope

- The coefficient of determination (R²) between yields and Planet-derived surface reflectance's varied among fields from 0.1 to 0.75 (average among 15 fields was 0.34±0.17)
- Temporal variations of R² for single-date linear relationships between yields and Planet-derived surface reflectance for two different fields of soybean: one field featuring a high coefficient of determination (0.76) and another field poor correspondence (0.28)

Correlating in-field yields with HLS data

 Maximum per-field Rsq between yields and linear models based on various features

Correlating in-field yields with HLS data

Correlating in-field yields with HLS data

Conclusions

- Regional (for Ukraine) winter wheat yield prototype product is available
 - Plans to extend to major wheat producing regions in Ukraine and Kansas
- Potential for improvements fin yield assessment by combining optical + SAR data
- Corn/soybean, Iowa
 - 4 PlanetScope's spectral bands at 3 m explained from 10% to 75% of in-field corn/soybean yield variability
 - Similar results for HLS at 30 m resolution
 - Rsq generally decreases as yields increases

Thank You!