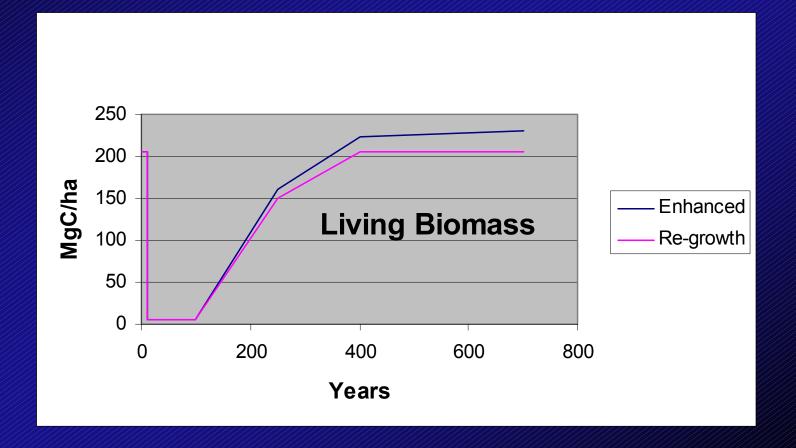

"Do Changes in Land Use Account for the Net Terrestrial Flux of Carbon to the Atmosphere?"

> R.A. Houghton Woods Hole Research Center

Introduction

Several lines of evidence suggest a terrestrial carbon sink (in the tropics as well as in northern mid-latitudes).

Historically this sink has been attributed to environmentally-enhanced growth (e.g., CO₂ fertilization).



Introduction

A recent study (Caspersen et al. 2000) suggests:

- 98% of growth in US forests is explained by age structure (i.e., by re-growth from past disturbance).
- Only 2% of tree growth is explained by enhanced growth.

Regrowth vs. Enhanced Growth

Introduction

Is the terrestrial sink the result of Regrowth or Enhanced growth?

or

Do changes in land use and management (= regrowth) dominate the net terrestrial flux of carbon?

If so...

Good news: Implementation of the Kyoto Protocol is simple (i.e., indirect effects are unimportant).

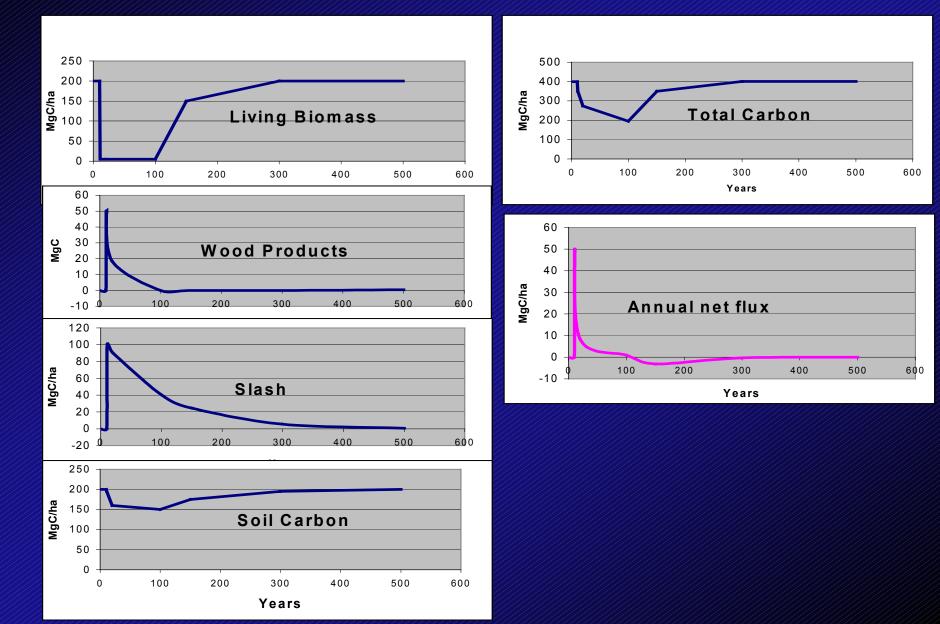
Bad news: The continued functioning of a terrestrial sink is limited.

Do changes in land use and management account for the terrestrial carbon flux?

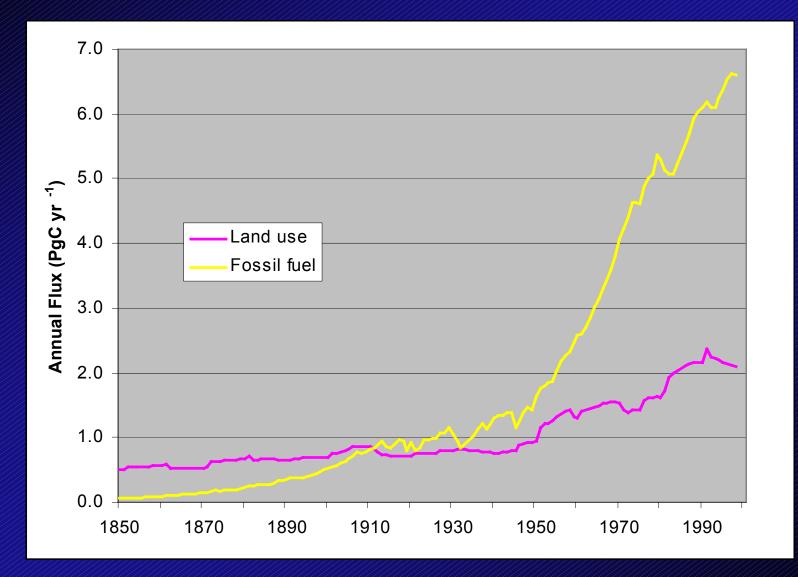
Outline

 The Global Carbon Balance
 The flux of carbon from Land-Use Change
 Regrowth vs. enhanced growth as mechanism for terrestrial carbon storage

• Different methods


Global Carbon Budget

	1980s	1990s
Fossil fuel emissions	5.4 <u>+</u> 0.3	6.3 <u>+</u> 0.4
Atmospheric increase	3.3 <u>+</u> 0.1	3.2 <u>+</u> 0.2
Oceanic uptake	-1.9 <u>+</u> 0.6	-1.7 <u>+</u> 0.5
Net terrestrial flux	-0.2 <u>+</u> 0.7	-1.4 <u>+</u> 0.7


from IPCC

Changes in land use

Changes in area (emphasis on forests) Croplands (clearing and abandonment) Pastures Shifting cultivation Changes in carbon stocks (C/ha) Wood harvest & recovery Fire management [Not environmentally-induced change] Response Curves

Annual Emissions of Carbon

Global Carbon Budget

	1980s	1990s
Fossil fuel emissions	5.4 <u>+</u> 0.3	6.3 <u>+</u> 0.4
Atmospheric increase	3.3 <u>+</u> 0.1	3.2 ± 0.2
Oceanic uptake	-1.9 <u>+</u> 0.6	-1.7 <u>+</u> 0.5
Net terrestrial flux	-0.2 ± 0.7	-1.4 ± 0.7
Land-use change	2.0 <u>+</u> 0.8	2.2 <u>+</u> 0.8
Residual terrestrial flux	-2.2 <u>+</u> 1.1	-3.6 <u>+</u> 1.1

Factors affecting carbon storage

Changes in land use

- Croplands
- Pastures
- Shifting cultivation
- Degradation
- Wood harvest
- Fire management

REGROWTH

Other factors
CO₂ fertilization
N deposition
Climate

ENHANCED GROWTH

Natural disturbances

Terrestrial sources and sinks of carbon:
Are they explained by changes in land use? or

• Are other factors important?

Annual terrestrial flux of carbon in the 1990s (PgC yr⁻¹)

 $O_2 \text{ and } CO_2$ Inverse calculations Forest Land-use CO_2 , ${}^{13}CO_2$, O_2 inventories change

- Globe -1.4 -1.4 2.2
- Northern -2.4 -0.7 -0.03 mid-latitudes
- Tropics 1.2 2.2

Methods used to estimate terrestrial carbon sinks

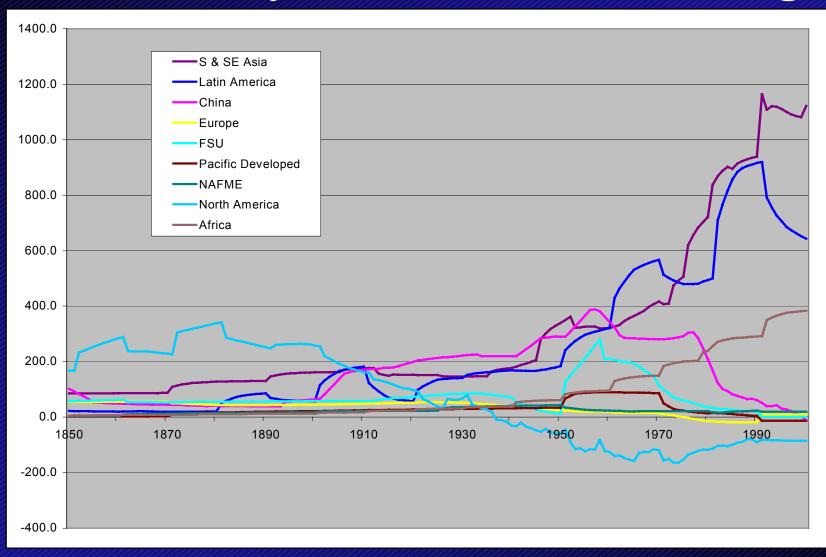
Top-down methods
 Atmospheric concentrations of O₂ and CO₂
 Inverse modeling: atmospheric data with models of atmospheric transport
 Bottom-up methods
 Forest inventories
 Land-use analyses

Global Carbon Budget

	1980s	1990s
Fossil fuel emissions	5.4 <u>+</u> 0.3	6.3 <u>+</u> 0.4
Atmospheric increase	3.3 <u>+</u> 0.1	3.2 <u>+</u> 0.2
Oceanic uptake	-1.9 <u>+</u> 0.6	-1.7 <u>+</u> 0.5
	-1.7 <u>+</u> 0.6	-2.4 ± 0.7
Net terrestrial flux	-0.2 <u>+</u> 0.7	-1.4 <u>+</u> 0.7
	-0.4 <u>+</u> 0.7	-0.7 <u>+</u> 0.8
Land-use change	2.0 ± 0.8	2.2 <u>+</u> 0.8
Residual	-2.2 <u>+</u> 1.1	-3.6 <u>+</u> 1.1
terrestrial flux	-2.4 ± 1.1	-2.9 <u>+</u> 1.1

IPCC Plattner Inverse calculations with atmospheric data and transport models

Global net terrestrial flux $-1.4 (\pm 0.8)$ adjusted for rivers -0.4 to -0.8


> Gurney et al. (2002) Sarmiento & Sundquist (1992) Aumont et al. (2002)

Annual terrestrial flux of carbon in the 1990s $(PgC yr^{-1})$

 O_2 and CO_2 Inverse calculations Forest Land-use CO_2 , ${}^{13}CO_2$, O_2 inventories change

Globe -0.7 -0.6 to -1.0 - 2.2

Emissions from Land-Use Change

Terrestrial sources (+) and sinks (-) of carbon estimated by different methods (*PgC yr*⁻¹)

Region Inversions based on atmospheric data and models (Gurney et al. 2002) Analysis of land-use change (Houghton, in press) Forest inventories (Goodale et al., 2002)

Globe Tropics North South -1.4 (±0.8) 1.2 (±1.2) -2.4 (±0.8) -0.2 (±0.6) $\begin{array}{c} 2.2 \ (\pm 0.8) \\ 2.2 \ (\pm 0.8) \\ -0.03 \ (\pm 0.5) \\ 0.02 \ (\pm 0.2) \end{array}$

-0.65 (<u>+</u>0.05)

Non-Forests:

What's happening outside of forests?

Carbon accumulation in the U.S. $(PgC yr^{-1} in 1990)$

	Pacala (20	et al. 01)	Houghton et al. (1999)	Houghton (in press)	Goodale et al. (2002)
	low	high			
Forest trees	0.11	0.15	0.072	0.046	0.11
Forest organic matter	0.03	0.15	-0.010	-0.010	0.11
Cropland soils	0.00	0.04	0.138	0.00	•••
Woody encroachment	0.12	0.13	0.122	0.061	···
Wood products	0.03	0.07	0.027	0.027	0.06
Sediments	0.01	0.04	•••		<u></u>
Total sink	0.30	0.58	0.35	0.12	0.28
	43%	36%	74%	51%	

Annual terrestrial flux of carbon in the 1990s (PgC yr⁻¹)

	O ₂ and CO ₂	Inverse calculations CO_2 , ${}^{13}CO_2$, O_2		
Globe	-0.7	-0.6 to -1.0		2.2
Northerr mid-latit		-1.8	-1.4	-0.03

Change in forest vegetation (TgC yr⁻¹) in northern mid-latitude regions around the year 1990

Region	Land-Use	Forest	Difference
	Change	Inventory*	
Canada	-25	40	65 (larger)
Russia	-55	40	95 (larger)
U.S.A.	-45	-110	65 (smaller)
Europe	-20	-90	70 (smaller)
China	30	-40	70 (smaller)
Total	-115	-160	45 (smaller)

* From Goodale et al. (2002)

Is the difference the result of... ...growth enhancement?

0ľ

...errors and omissions in analyses of land-use change?

Growth enhancement?

Caspersen et al. (2000) 98% of growth attributed to age structure 2% attributed to growth enhancement • (0.001-0.01% per year) Joos et al. (2002) 0.1% per year also fits data a growth enhancement of 0.1% per year yields a 25% increase in growth for a doubling of CO_2

Terrestrial fluxes of carbon (PgC yr¹ for the period 1980-1989)

	McGuire et al.	Houghton
Croplands	0.8	1.21
Pastures	•••	0.44
Shifting cultivat	ion	0.24
Logging	•••	0.29
Afforestation	•••	-0.10
Other (fire supp	(.)	-0.11
CO ₂ fertilization	-1.9	•••
<u>Climatic variatic</u>	on 0.4	<u></u>
Total	-0.7	2.0

Have analyses of land-use change missed a sink?

 Growth enhancement ignored
 Natural disturbances ignored
 Gross rates of clearing and abandonment underestimated
 Management largely ignored Summary for the northern temperate zone

Changes in land use yield a smaller sink than other estimates.
Are the analyses incomplete?
Or is there enhanced growth?

Apprual terrestrial flux of carbon in the 1990s (PgC yr¹)

O₂ and CO₂ Inverse calculations "Forest" Land-use CO_2 , ¹³ CO_2 , O_2 inventories change Globe -0.7 2.2-0.6 to -1.0 Northern -1.8 -1.4 -0.03 mid-latitudes 0 to -7 0.9 to 2.4 0.6 to 1.2 Tropics

The Tropics

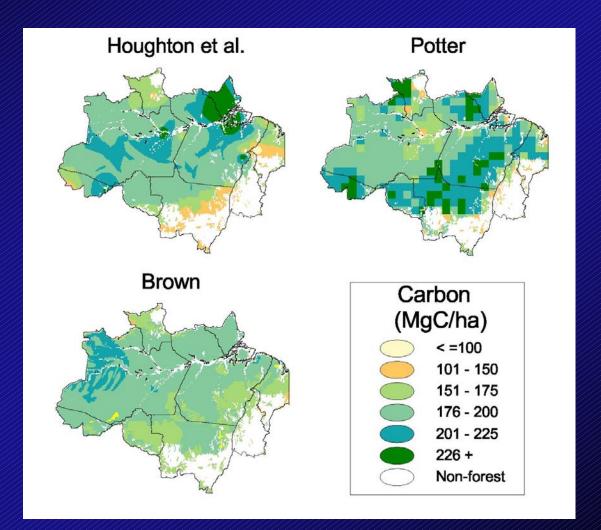
Either

A large source from land-use change is offset by a large sink in undisturbed forests

or

A more moderate source from land-use change accounts for the net flux A large carbon sink in undisturbed (Amazonian) forests?

Measurements of CO₂ flux (Grace et al. 1995, Malhi et al. 1998 vs. Wofsy, Goulden, others) 30-year sampling of small permanent plots (Phillips et al. 1998, 2002 vs. Clark 2002) Large emissions of CO₂ from waters (Richey et al. 2002)


A smaller carbon source from tropical deforestation?

Lower rates of deforestation (Achard et al. 2002, DeFries et al 2002)

Lower estimates of biomass

Loss of tropical forest cover (percent lower than the FAO)				
	Achard et al. (2002)	DeFries et al. (2002)		
Tropical America	n 18	28		
Tropical Asia	20	16		
Tropical Africa	42	<u>93</u>		
All tropics	23	54		

Biomass in Amazonia

Conclusions

Northern temperate zone Changes in land use yield a smaller sink than other estimates Are the analyses incomplete or is there enhanced growth? The Tropics

- High rates of deforestation suggest enhanced growth
- Low rates of deforestation suggest little enhanced growth

Priority Research Areas Northern mid-latitudes

Gross rates of clearing and abandonment

Management, including fire suppression

Woody encroachment

Natural disturbances

Priority Research Areas

The Tropics

Rates of deforestation and afforestation
 Aboveground biomass
 Links between land use and climate
 Fires (Brazil, Indonesia)

The tropics should be easier

The major changes in carbon involve changes in forest area

The difference in carbon stocks (C/ha) between forests and non-forests is large The northern mid-latitudes are more difficult

The major changes in carbon involve changes in carbon stocks (C/ha)

Growth, management, enhanced growth

And many sensors saturate at moderate levels of biomass

...What if we could measure changes in aboveground biomass from space?

Could we see carbon sinks using multidates?

Could we attribute the sinks to land-use change?

Yes, if we identified the history of land-use change, management, disturbance, etc.