Estimating Carbon Emissions from Historical Changes in Global Agricultural Land

Navin Ramankutty, Jon Foley, Holly Gibbs, Univ. of Wisconsin

Ruth DeFries, Univ. of Maryland

Richard Houghton, Woods Hole Research Center

Land use C emissions

New satellite-based estimates are now available for the last two decades

Pg-C/yr	1980s	1990s	Method
Houghton	2.0	2.2	Land cover inventory
McGuire	0.9-1.6	_	Cropland inventory
DeFries	0.6	0.9	AVHRR deforestation
Achard		<1.0	Landsat deforestation

Comparing apples to oranges...

- different <u>extents</u> (global, humid tropics, pantropics,...)
- different land covers (deforestation, cropland change)
- confusion between gross and net deforestation
- different approaches / models for emissions
 - Historical land use included or not
 - Current flux versus "committed flux"
 - Soils included in some & not others
- Revisit the 1980s & 1990s tropical budget, in collaboration with UMD and Woods Hole

Many Uncertainties..

- Rates of land cover change
- Initial carbon stocks in vegetation and soil
- Vegetation & soil <u>carbon dynamics</u> upon clearing
- Fate of cleared carbon

==> Uncertain rates of tropical deforestation account for more than half of the range in estimates of the global carbon flux

(Houghton and Goodale, forthcoming)

NET Estimates of Deforestation for 1990s

Disagreement in estimates for 1990s

Data from DeFries et al. 2002, Achard et al. 2002, FRA 2000

Different domains...

TREES domain Humid Tropics

TREES excludes ~50% of geographic area of AVHRR and FAO

AVHRR & FAO domain Total Tropics

Finding a consensus estimate

Different baselines, time periods, extents, and methods = different estimates

- Triangulate to produce consensus (best?) estimate -- a probability distribution, rather than single estimate.
- Mixed results
 - Moderate success in humid tropics
 - Dry tropics remain problematic

Can remote sensing data capture land cover change?

Unless spatial resolution is at stand level, may be capturing <u>net</u>, not gross deforestation.

- Since canopies can close in 5-10 years, while biomass accumulation continues for 50-100 years, even high resolution remote sensing may miss forest dynamics unless we monitor every year.
- Do not accurately track the fate of land following deforestation.

Net vs. Gross deforestation

Total Change? 25% decrease in forest & 25% increase in regrowing or planted forest

8km

What's missing in decadal snapshots?

Shifting cultivation in highlands of Vietnam

To directly observe changes we may need to monitor every 2-3 years.

Mature forest

Regrowing Forest

Ratio of Regrowth to Deforested

~1:3 Brazilian Amazon (Skole and Tucker 1993)

~1:2 Southeast Asia (Analysis of TRFIC data)

Photo courtesy of Compton J. Tucker

Need to track fate of cleared land

What is the mode of clearing? How long are typical fallow cycles? How much land is abandoned to secondary forest?

Time

Time

Time

A Way forward?

- Triangulated estimate of deforestation rates, with error bars
- Locations of change from AVHRR snapshots
- Iand cover dynamics from:
 - high-temporal resolution remote sensing data
 - Completed meta-analyses (Lambin and Geist, Rudel)
 - household surveys, local census data, etc.

Integrate with "regional" land-use transition models

Regional Land-use Transition Models

Land-use regions identified by meta-analysis (Tom Rudel, Rutgers)

Consensus Estimate

Land-use Transition Models

Implications for C emissions

Gross deforestation will overestimate emissions

Regrowth & uptake of carbon is important

Net deforestation will underestimate emissions

Will overestimate uptake from regrowth

Conclusions

- It is important to consider the <u>full suite of land</u> <u>cover transformations</u> to evaluate carbon emissions.
 - Need to integrate remotely-sensed with groundbased case study information.
- History of land use is important!
 e.g., consider *at least* previous 20 yrs in Amazon
 Net or Gross Deforestation, Committed Flux