Review of the Impacts of Land Use and Land Cover Change Effects in Coastal Zones

Thomas R Fisher Horn Point Laboratory University of Maryland-CES

LCLUC Conceptual Scheme

Tools
observations
modeling

Topics:

- Approaches
 - Direct experiments (usually deforestation)
 - Primarily hydrologic consequences
 - Space for time swaps
 - Based on spatial variations in land cover
- How does stream flow and chemistry vary with land cover/use?
- What does hydrochemical modeling tell us?

Historical Reconstructions

- Socioeconomic drivers
 - historical data or records
- Land use/cover
 - maps, aerial photos, satellite imagery
- Biogeochemical consequences
 - data rarely available

LULCC in the Choptank River Basin, MD

Focus of the talk:

- Effects of changes in land use/cover on
 - export of materials from land to water
- Two components:
 - stream discharge (storm response, water yield)
 - "water quality" = conc. of diss. or part. materials
 - Low conc = good water quality
- Effects on soils

Approach:

- Ideal situation:
 - monitoring WQ during land use/cover change
 - rarely observed (no colonial water data)
 - sediment cores reveal erosion and plant changes
 - Good validation data, but not spatially explicit
- Alternative: "space for time swaps"
 - Use variations in space to infer trajectory of a time course
 - Sample WQ in basins with varying amounts of land cover
 - Substituting spatial variations for temporal ones

Approach (con't):

Problems:

- Assumes common temporal trajectory for all land cover conversions
 - sampling in space = sampling in time
- Ignores real spatial heterogeneity with differing trajectories and histories

Choptank River Basin

Lower forest cover is associated with higher N conc.

Extrapolation of regression line agrees with data for undeveloped basins.

Clark et al. (2000): TN in undeveloped basins: 0.26 mg N L⁻¹

Data sources: Norton, MM and TR Fisher. 2000. Ecol. Engin. 14: 337-362 Clark et al. 2000. J. Amer. Water Res. Assoc. 36: 849-860

Choptank River Basin

The two main land covers are inversely correlated.

Data source: Norton, MM and TR Fisher. 2000. Ecol. Engin. 14: 337-362

Effect of Land Use in the Choptank River Basin

Increasing agriculture and decreasing forest result in higher total N in streams, primarily as nitrate.

Increasing agriculture may have a more linear relationship with stream N over a narrower range of % ag and exhibit geological effects (Jordan et al 1997).

Hamilton et al. (1993)

Couplings of Watersheds and Coastal Waters

Cape Cod: Valiela et al. 1992

Groundwater
nitrate increases
with housing
density in
unsewered
areas.

Fertilizer applications and nitrate in groundwater on the Delmarva Peninsula

Groundwater
nitrate has also
increased
exponentially
over the same
period

Fertilizer
applications
increased
exponentially
from 19451980

data source: Bohlke and Denver (1995)

Choptank Basin

Source: Sims et al. 1998

Increases in soil P lead to increased leaching of P in overland flow. Source: Carpenter et al. 1998

Hydrology (some direct experiments)

- Forest removal and urbanization
 - Increased rate of response to a storm and loss of baseflow
 - Less capacity to retain water (= lower baseflow)
 - Total volume of water increased
 - Less evapotranspiration (= more stormflow)

Source: Bosch and Hewlett 1982

Urbanization increases stream velocity and total runoff

The effect of urbanization on storm runoff.

Source: Chow et al. 1988

Impervious surfaces decrease stream baseflow between events.

Source: Klein 1979

Watershed export

- Export = water flow * concentration
 - Increased rates of water flows
 - Increased concentrations in stream water
- Conversion from forest to ag to urban
 - Exports greatly increased
- Often normalized per unit area watershed
 - kg ha⁻¹ y⁻¹ (area yield coefficients)

Agriculture and human populations are the primary cause of increased mobility of N and P in watersheds and export in streams.

Useful estimates from classified imagery.

Other relationships with land use:

- Potassium and agriculture
- Urban and ag land uses (C, sed)
- EMAP surveys of land cover effects (NO₃-, Cl-)

1----

New England basins

Source: Driscoll and Whitall, unpub.

Hudson River Subbasins

source: Howarth et al. 1991

EPA EMAP strategy:

- Sample a stream once in time
- Sample extensively in space
- Use land cover to understand stream chemistry

$$log(conc) = a_1(LULC_1) + ... + a_n(LULC_n) + error$$

Location of sample sites in 1993 and 1994 EMAP stream surveys.

EPA Region III:

Intensive spatial sampling, single stream water sample.

[Cl⁻] was primarily associated with urban areas and road salt applications. Modeled values agreed well with observed.

[NO₃⁻] was exponentially associated with forested land, much as we observed in the Choptank.

Relationships with soils:

- N transfer coefficient in Choptank subbasins
 - Use land cover to estimate [NO₃] in groundwater
 - Compare with [NO₃] in stream base flows
 - Base flows are derived from groundwater flows
 - Base flow [NO₃] < estimated groundwater [NO₃]
 - Some NO₃ is lost as groundwater moves to streams

Choptank Basin, transfer of groundwater NO₃ to baseflow

What can we learn from hydrochemical modeling?

- Calibrate model to current conditions
- Model experiments
 - Withhold fertilizers
 - Eliminate human wastewaters
 - Compare with all forested condition

Island

Tilghman Island

- 1. Large wastewater effect: ~50% increase
- Current P export 400% of forested scenario

- 1. Strong fertilizer effect: 200-300% increase
- 2. Strong wastewater effect: 500-900%
- 3. Current N export ~20 X forested scenario

Summary of land use effects

- Of all land covers, forests have the lowest water yields and export of materials
 - Highly retentive
- Agriculture increases N and K losses via enrichment of groundwater K⁺ and NO₃⁻
- Soils moderate ag N losses and accumulate P
 - Release P from surface materials during storm events
- Urban and agricultural areas export 10-100 x sediment and C as forested areas
- Urban areas increase water yields, export NaCl from road salt use, and increase NO₃⁻ in groundwaters

Four of the stations were tidal in summer, and in-stream loss of NO₃ reduced annual concentrations. Three other stations had unusually welldrained soils, leading to greater leaching losses of NO₃.

The activities of human populations increase nitrate concentrations in rives and N export from large river basins.

Source: Peierls et al (1992)

Source: Liu et al (2000)

Choptank example

- Degraded water quality now observed
 - EPA 303d list of impaired waters
- Short history of observations
- Little undisturbed information available

Choptank River near Greensboro

Choptank River near Greensboro

Italian River Inputs to the Adriatic Sea

Application of area yield coefficients to land cover yielded good agreement with observed river export.

measured P export, kg y⁻¹

Source: Marchetti and Verna (1992)

What about wastewater (sewage) inputs to the Choptank?

There is about 5-7 millions of gallons of sewage entering the Choptank per day from 11 licensed WWTPs.

Concentrations of N and P have decreased over time due to plant management.

Discharge volumes have <u>increased</u> over time due to population growth

Despite increases in discharge volume, P fluxes are down, and N fluxes have remained stable due to improved WWTP management.

N and P Budgets for the Choptank Estuary

Agriculture is the primary source of N, and wastewater + agriculture are primary sources of P in the Choptank basin.

Source: Lee et al. 2000. Biogeochem. 56: 311-348

What has been happening to estuarine water quality in the Choptank?

Algae and turbidity are increasing over time in the Choptank estuary

Effects of land use on water quality:

- Fertilizer applications have greatly increased nitrate in groundwater since 1950
- N concentrations in streams are elevated in basins dominated by agriculture
- Human wastewaters are high in P and are an important source if only secondary treatment is used
- The increasing size of human populations is a primary driver of eutrophication

Management Recommendations:

- Tertiary treatment of wastewater
 - P removal will have more impact than N
- Target BMP application to high load subbasins dominated by agriculture
 - Winter cover crops
 - Stream buffers
 - Restored wetlands
- Integrate management of oysters, SAV, TSS, and nutrients
 - Let the benthic biota help improve WQ

How can we reconstruct the land use history of the Choptank basin?

Satellite imagery

Aerial photographs

Historical maps

Socioeconomic statistics

after 1972

after 1936

after 1845

when available

Socioeconomic Statistics

- •# people
- •Food requirements

Summary of the land use history in the Choptank basin

- Initial settling and tobacco production resulted in scattered deforestation
- After 1750, wheat production resulted rapid expansion of agriculture
- 1900 represented the agricultural maximum in the Choptank, about 75% of land use.
- Urban areas have been small, but growing exponentially with the human population

Exponential expansion (urbanization) of small towns was a consistent pattern observed in the GIS coverages of the Choptank basin.

Annual Discharge at Greensboro, MD (01491000)

Choptank River near Greensboro

Approach (con't):

- Assumption: spatially varying intensity can illustrate
 - Trajectory
 - Consequences
 - Stream discharge (some direct observations)
 - Water quality

Trajectories of LCLUC effects

time —

Trajectories of LCLUC effects

time —