Modeling and Forecasting Effects of Land-Use Change in China Based on Socioeconomic Drivers

> Boston University Department of Geography Principal Investigator: Robert K. Kaufmann

Co-Investigators:

Chinese Collaborators:

Curtis E. Woodcock Dennis G. Dye Karen C. Seto Lu Jinfa Li Xiaowen Wang Tongsan Huang Xiuhua Liang Youcai

Project Overview

Remote Sensing Methodologies Atmospheric Correction Change Detection Methodologies Land-Use Change Map, Accuracy Assessment, & Area Estimates

Biophysical and Biogeochemical Effects

Time of Change

Economic Data

Research Findings to Date

Project Overview

Goals

- Quantify rate and amount of land conversion
- Quantify socioeconomic drivers of land-use change
- Quantify effects of land-use change on biophysical properties and biogeochemical processes

Steps

- Quantify land-use change from satellite images
- Model relation between land-use and socioeconomic variables
- Explore the effect of land-use change on biophysical attributes and biogeochemical processes
- Forecast land-use change under various scenarios for economic development

List of Atmospheric Correction Methods

```
Chavez, P.S. 1989.
```

DOS2:

```
Chavez, P.S. 1996.
```

DOS3:

Use Tz and Tv of Rayleigh atmosphere, Edown (downwelling diffuse irradiance) from 6S with Rayleigh atmospheric optical thickness and mid-latitude winter atmosphere model.

DOS4:

Image based estimate of Tz, Tv, and Edown

Liang et al. 1997.

```
rho (TM1) = 0.25*rho(TM7) rho (TM3) = 0.50*rho(TM7)
```

References:

- Chavez, P.S. 1989. Radiometric Calibration of Landsat Thematic Mapper Multispectral Images. PE & RS. 55: 1285-1294.
- Chavez, P.S. 1996. Image-Based Atmospheric Corrections -- Revisited and Improved. PE & RS. 62: 1025-1036.
- Liang, et al. 1997. An Operational Atmospheric Correction Algorithm for Landsat Thematic Mapper Imagery over the Land. Journal of Geographical Research. 102:17, 173-17, 186.

Land-Use Categories (Stable)

Water

Natural VegetationEucalyptus, Pine, Fast Growing Trees, Shrubs

Agriculture

Fish Ponds, Field Crops, Rice Fields, Orchards

Urban

Old urban, transition to new urban

Land-Use Categories (Change)

Agriculture to Water • new reservoirs

Natural Vegetation to Waternew reservoirs

Water to agriculture

water to fish ponds, rice fields, or bananas

Natural to Urban (non-economic use to developed)

water or natural vegetation to urban/transition

Agriculture to Urban (some economic use to developed)

 fish ponds, rice fields, field crops, or orchards to urban/transition

Test Dataset

- 809 sites
- 7807 pixels
- 23 classes
- 9 classes
- Sites based on field visits and image interpretation
- Training and testing done on successive 80/20 splits
- No testing data ever seen in prior training (No cheating allowed!)

Econometric Techniques - Logit Models

Specification

- Dependent variable: Land cover type
- Independent variables: DN values for bands 1-5, 7, brightness, greenness, wetness

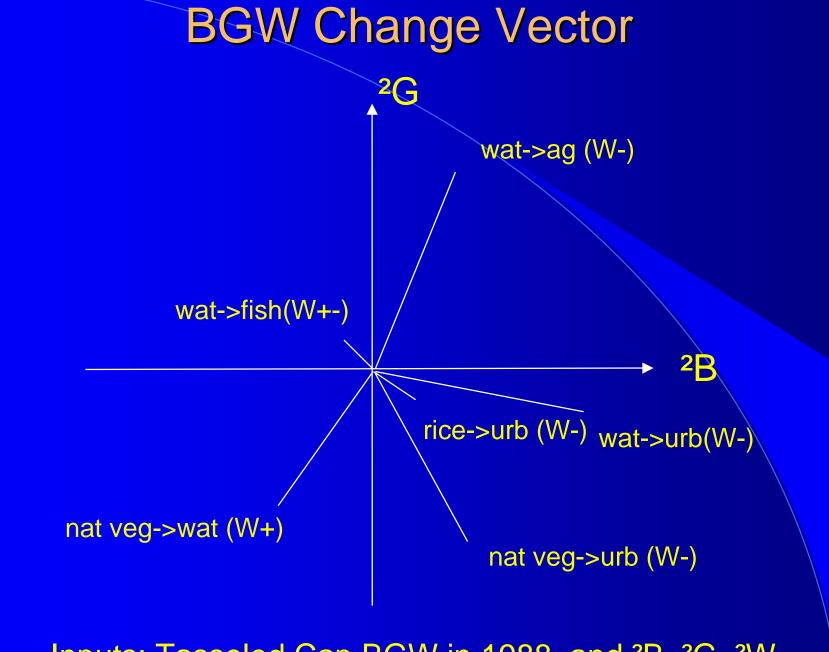
Diagnostic Statistics

- Independent variables generally significant
- In sample cases correct generally greater than 95%

Artificial Neural Networks (Help from Gopal and Woodcock's NSF project)

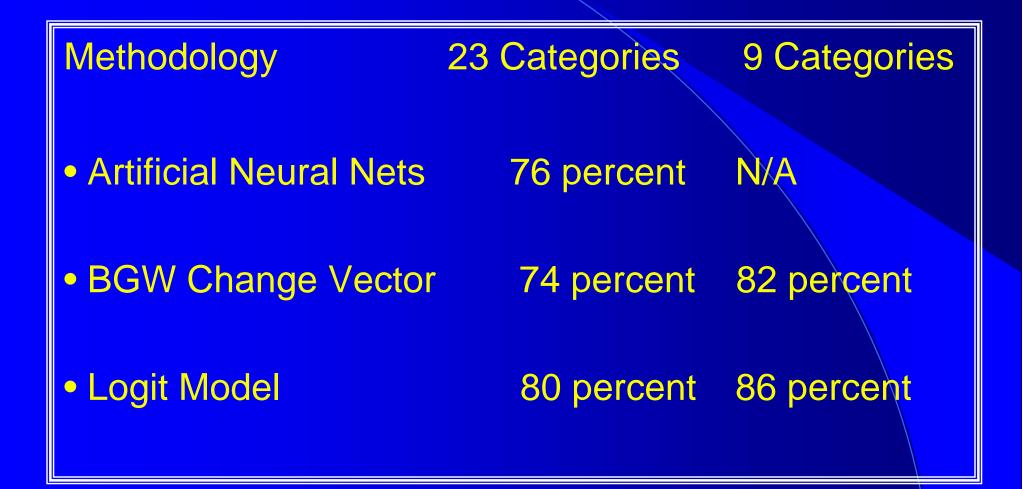
Multiple ways of formulating Fuzzy Artmap (Carpenter et al., 1991)

1. El-Gasim's Methods (Abuelgasim et al., in press at RSE)


- Used to identify change due to Gulf War
- Train on classes in initial date
- Used trained net on second date
- Allows identification of new land cover categories
- Uses fuzzy membership values for multiple classes to determine change

Artificial Neural Networks (cont'd)

- 2. Two-date Classification
 - Input both dates of spectral data, including examples of change classes
 - Output is both stable and change classes
- 3. All-date classification
 - Input all 9 dates of imagery
 - Output is both stable and change classes


References

- Abuelgasim, A.A., Ross, W. D., Gopal, S., and C. E. Woodcock, In Press. Change Detection using adaptive fuzzy neural networks: Environmental damage assessment after the Gulf War. RSE.
- Carpenter, G. A., Grossberg, S. and J.H. Reynolds, 1991. A neural network architecture for object recognition by evidence accumulation, IEEE Transactions on Neural Networks, 6(4): 805-818.

Inputs: Tasseled Cap BGW in 1988, and ²B, ²G, ²W Output: Stable and Change Classes Classification: Bayesian Maximum Likelihood

Preliminary Results on Test Data

Problem

- Existing map identifies land-use categories in 1988 and 1996
- Need to know date at which land-use changes have occurred

Methodologies

- Neural Nets
- BGW change vector
- Time series techniques

Artificial Neural Networks for Time of Change

Multiple configurations of Fuzzy Artmap available

- 1. El-Gasim's Method
 - Could be sequentially applied to successive pairs of images to identify time of change
- 2. Two-date classification
 - Could be sequentially applied to successive pairs of images to identify time of change
- 3. All-date classification
 - To identify both type and time of change would require examples of all kinds of change at all possible times for training
 - Not viable option for this project

BGW Change Vector Time of Change

Approach:

Once the 1988-1996 classification is trained, any pair of dates can be used
Plan is to apply existing training statistics on

images in a pair-wise fashion

Method of Atmospheric Correction:
Ridge Method of DN Matching

Time Series Techniques

Estimate models for constant classes

- Dependent variables: DN value bands 1-5, 7, brightness, greenness, wetness, NDVI
- Independent variables: solar zenith angle, aerosol optical depth, minimum DN value, seasonal dummies

Estimation technique

- Stack as seemingly unrelated regressions
- Fixed effects estimators

Time Series Techniques (cont'd)

Predict pixel values

- Use classification technique to determine land-use categories
- Simulate all possible dates of change

Choose best model

- Pair-wise comparison of change dates
- Choice criterion Predictive accuracy tests developed by Diebold and Mariano (1995)

Reference:

Diebold, F. X. and R. S. Mariano. 1995. Comparing Predictive Accuracy. Journal of Business and Economic Statistics. 13(3): 253-263.

Accuracy Assessment and Area Estimates

Ground Truth											
Map Class	water	nat veg	ag	urban	ag>wat	nat>wat	wat>ag	nat>urb	ag>urb	total	map prop
water	49									49	7.82
nat veg		85	6							91	44.13
ag		1	109	1					2	113	37.68
urban			2	53				1		56	2.67
ag->wat	2		11		15	1				29	.06
nat->wat					8	22				30	.02
wat->ag							24			24	.56
nat->urb	1	2	4					27	17	51	1.96
ag->urb			5	2				5	41	53	5.10

Total # sites:496

Area Weighted Accuracy:93.50%

Class	Map Estimate (% of total area)	Corrected Estimate (% of total area)	Net Change (%)
water	7.76	7.82	.77
nat veg	46.80	44.13	-5.71
ag	35.06	37.68	7.47
urban	2.31	2.67	15.58
ag- >water	.1	.06	4
nat- >water	.03	.02	33
water-	.56	.56	0
nat- >urban	2.78	1.96	-29.49
ag- >urban	4.60	5.10	10.87

Biophysical Effects

Albedo of urban areas is surprisingly low (previously observed in Egypt)

 The effect of a dramatic increase in albedo due to urbanization is only true for a limited number of years (less than a decade)

 Approach - tracking of albedos derived from Landsat TM imagery through time for urbanized sites Biogeochemical Effects Change in Surface Carbon Flux

- Intent is to include both the change in surface carbon flux due to land-use change and also emissions due to increased fossil fuel consumption
- Resources limit our abilities to do detailed estimates of surface carbon fluxes
- Expect fossil fuel consumption changes to swamp surface flux changes

County Level Socioeconomic Data Sources: Professor Lu Jinfa, Institute of Geography, Chinese Academy of Science Liang Youcai, Vice Director, Economic Forecasting Department, State Information Center Statistical Yearbook of Guangdong Province (1985–1998)

- Value added by sector
- Urban/Rural Population
- GDP
- Income
- Agricultural output
- Number of vehicles

Socioeconomic Data Compilation and Analysis

Dr. Lee Xinzhong, Institute of Quantitative and Technical Economics Chinese Academy of Social Science, World Bank Visiting Scholar, Boston University Summer of 1999

Research Findings to Date

 The degree of atmospheric correction required is related to the methods used for change detection and research question

- New modifications to dark-object-subtraction methods do not significantly improve change detection accuracies
- We have been able to map land-use change with high accuracy (93.5%), particularly with respect to the ultimate land-use classes
- The amount of developed land has tripled between 1988 and 1996

Research Findings to Date (cont'd)

- Application of innovations from time series econometrics and artificial neural networks improve monitoring of change and time of change in a series of images (relative to conventional methods)
- Effects of urbanization on albedo do not seem to follow expectations
- Spatially disaggregated socioeconomic data are available for the study period
- Period of analysis limited because Landsat images are unavailable 1982 – 1987