Interannual variability in water and biogeochemical inputs to a coastal Bornean peatland
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Background Long-Term Rainfall (1980-2014)

« Forested Bornean peatlands are ombrogenous, or rainfed, ecosystems that derive Fig. 2. (a) Long-term rainfall data indicate considerable inter- and intra-annual rainfall (2009-2010’ 2012_2014)
water exclusively from precipitation. variability. Red and blue dots indicate dry (July-September) and wet (October-
December) season months, respectively. Fig. 4. Bulk rain S fluxes
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alter biogeochemical inputs to ombrogenous Bornean peatlands
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M et h O d S g 1000 g - fires, mean = 10/mo) and WY1 (52 fires, mean = 4/m_o). Monthly fire totals and sulfate
800 - concentrations were not correlated, however, suggesting that S sources other than biomass
e Ina 12 ha forested peatland in West Kalimantan, Indonesia, bulk rainfall and 600 = . 0 burning, such as volcanoes, also contributed to elevated S inputs.
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throughfall water flux to soil were measured weekly to monthly during four water
years (WY, months September-August) dominated by El Nifo (WY1, 2009-2010),

La Nifia (WY2, 2010-2011), and neutral (WY3/4, 2012-2014) conditions. Peatland Water Fluxes (2009-2011, 2012-2014)

 Rainfall data (1980-2014) from the nearest meteorological station were used to
assess ENSO effects on rainfall variability.
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 The MODIS Active Fire Product (MCD14ML) was used to determine the number of 450
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Fig. 3. Wolter’s Multivariate ENSO Index (MEI, top) for the period August 2009- é‘g’ N =E - ‘ I =E -
September 2014 showing months classified as EI Nifo or La Nina (otherwise neutral). “
Sampled dry seasons (light grey shading) were dominated by moderate El Nifio, strong 2909 2010 2015 =014 2000 2010 2013 2014 2009 2010 018 2014
Dry Season (Jul-Sep) Dry Season (Jul-Sep) Dry Season (Jul-Sep)

La Nifna, weak La Nina, and weak El Nifio conditions. Water fluxes over the four
water years (September-August) were characterized by substantial monthly variability.
On average, November was the wettest month (339 mm), receiving 2.5-fold times
more rain than February (135 mm), the driest month. Overall, there was less intra-
annual variability in both rainfall and canopy throughfall fluxes when strong La Nina
conditions prevailed.

Fig. 4. No differences in any water fluxes were detected among dry seasons (July-
September). However, dry season rainfall and throughfall water fluxes were 15-25%
lower during a moderate (2009) versus a weak EI Niio dry season (2014) and 38-47%
higher during a strong (2010) compared to a weak La Nina (2013) dry season.
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sources alter chemical fluxes to this Bornean peatland.
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