

NASA EARTH EXCHANGE (NEX)

NASA

OVERVIEW

+ NEX is virtual collaborative that brings scientists together in a knowledge-based social network and provides the necessary tools, computing power, and access to bigdata to accelerate research, innovation and provide transparency.

VISION

To provide "Science as a service" to the Earth science community addressing global environmental challenges

GOAL

To improve efficiency and expand the scope of NASA Earth science technology, research and applications programs

Earth Science Data Operations

Mission Operations

Data Acquisition Flight Operations, Data Capture, Initial Processing, Backup Archive Data Transport to Data Centers/ SIPSs Science Operations
Science Data Processing,

Data Management, Interoperable Data Archive, and Distribution Distribution and Data Access

Adapting to new realities

Data volumes, network bandwidth

Need for an Earth Science Collaborative

- Earth science at NASA is a community effort
- 100s of investigators spend a majority of their time dealing with data
- Redundant storage and processing facilities result in larger overall computing budgets
- Moving data sets that are getting larger each year is expensive & timeconsuming
- Sharing knowledge (codes, intermediate results, workflows) is difficult

NEX Provides a Complete Work Environment "Science As A Service"

COLLABORATION

Over 500 Members

COMPUTING

Scalable
Diverse
Secure/Reliable

CENTRALIZED DATA REPOSITORY

Over 1300 TB of Data

KNOWLEDGE

Workflows
Machine Images
Model codes
Re-useable software

NEX Resources

Portal

- Web server
- Database server
- 543 registered members
- •

Sandbox

- 96-core server, 264GB memory, has 320 TB storage
- 135 users

HPC

- 720-core dedicated queue
 + access to rest of
 Pleiades (211,000 cores)
- 65 users
- 2.3 PB storage

Models/Tools/Workflows used by NEX User Community

- GEOS-5
- CESM
- WRF
- RegCM
- VIC
- BGC
- LPJ
- TOPS
- BEAMS
- Fmask
- METRIC
- LEDAPS for new sensors (L8SR, Sentinel-2)
- DART
- RHESSys
- STILT

...

Data (>1300 TB on & near-line)

- Landsat (> 2M scenes, including OLI)
- MODIS
- TRMM
- GRACE
- ICESAT
- CMIP5
- NCEP
- MERRA
- NARR
- PRISM
- DAYMET
- NAIP
- Digital Globe
- NEX-DCP30
- WELD (revised)
- NEX-GDDP
- LOCA
- NAFD-NEX
- Sentinel-2

ACCESS TO NEX

Portal

(available to Earth scientists through OpenID)

Sandbox

(available to Earth science community through Symantec validation)

Supercomputing

(only for NASA-supported teams through NASA security)

OpenNEX

(on Amazon Web Services, open to the world)

North American Forest Dynamics Phase III (U of Maryland, Goward/Huang et al.)

Forest disturbance tracking with Landsat with implications for carbon cycle modeling

NAFD-NEX research dataset archived for future use by the community at ORNL – released October 29

12/15/2015

Carbon Monitoring System (Ganguly et al.)

Tree cover for Continental United States at 1-m spatial resolution

- Data from NAIP for CONUS successfully staged on NEX (~330,000 scenes)
- Deep Learning architecture and statistical region merging implemented to do tree cover classification and segmentation
- Successfully processed the state of California (~11,000 scenes) end-to-end processing time is 48 hours.
- Processing 60TB/year, 240TB for 4 years and performing extensive validation (more than million square blocks of homogeneous pixels across different forest landscapes)

		Actual Class			
		Tree	Non-tree	Total Pixels	User's Accuracy
Predicted Class	Tree	14832	317	15149	97.9%
	Non-tree	3168	17683	20851	84.8%
	Total pixels	18000	18000	36000	
	Producer's Accuracy	82.4%	98.23%		90.31%

12/15/2015

Global vegetation biomass estimates at 100m using multi-sensor data fusion and machine learning (JPL, Saatchi et al.)

The global algorithm make use of the several medium resolution satellite data uploaded on the NEX platform:

- ALOS PALSAR (25 m resolution) 2007-2010
- SRTM DEM (30 m resolution)
- Landsat TM, ETM, etc. (30 m resolution)
- MODIS (250 m resolution)

Web Enabled Landsat Data (WELD, Roy et al.)

New version 3.0 to be released in December

- Atmospherically and BRDF corrected Landsat 5+7 monthly and annual composites
- 30-stage pipeline with QA/QC, performance metrics
- Separate image processing for EOSDIS Global Imagery Browse Services (GIBS)
- Processing 100TB/monthly composite, 25PB for all 18 years

L8-SENTINEL Processing Flow (GSFC, Masek et al.)

NEX Supporting the pilot Sentinel-2 Processing Architecture. Modules

implemented are:

BRDF adjustment

Atmospheric correction

- Cross-calibration
- Spectral adjustment
- Regridding/reprojection

Goal: Harmonized Landsat/Sentinel reflectance products for new S-2 image acquisitions, followed by Leaf Area Index retrievals

12/15/2015

Creating NEX-DCP30 Downscaled Climate Projections at 30 arc-second resolution

Changes in springtime (March-April-May) mean temperature over the conterminous US from 1950 to 2099.

- 33 CMIP5 models available
- All 4 RCPs (2.6, 4.5, 6.0, 8.5) and Historical runs
- 30 arc-second (800m) spatial resolution, monthly time-step, 1950-2099
- Max/min temperature and precipitation
 - Statistical downscaling (biascorrected spatial disaggregation; Maurer et al., 2007)

Global Daily Downscaled Climate Projections

- -CMIP5 archive downscaled using the Bias Correction and Spatial Disaggregation (BCSD) approach (Wood et al., 2002; Thrasher et al. 2012)
- -Global daily temperature and precipitation scenarios from 1950-2100 at 0.25 degree spatial resolution (~25km x 25km)
- -21 coupled General Circulation Models (global climate models)
- -2 Representative Concentration Pathways (RCPs) RCP 4.5 and RCP 8.5

12 terabyte dataset available via THREDDS at NCCS; visualizations developed by OpenNEX community and available at www.climateinternational.org

More information available at:

https://cds.nccs.nasa.gov/nex-gddp/

https://nex.nasa.gov/nex/projects/1356/

OpenNEX Public-Private Partnership

- Collaborative Computing
- On-Demand Computing
- Hands-on Tutorials
- Virtual Labs
- Access to Satellite and Climate
 Data
- Lectures by Experts

NEX in the near future

Science Platform

Access to science workflows, documentation, publications, tutorials, videos

Workshops

NEX Science and Outreach Infrastructure independent

Data Platform

Access to data and metadata services

Integration Platform

Access to tools, utilities and workflow components

(Open)NEX Core

Infrastructure

NEX Summary

Lowers the barrier of entry (co-locating data, model codes, and compute resources).

Allows knowledge sharing (through workflows and virtual machines).

Provides a framework for transparency, reproducible/verifiable results.

Platform for prototyping or extending applications.

Enabling broader community access through public-private partnerships.

Thank you

https://nex.nasa.gov

https://nex.nasa.gov/OpenNEX