Cropland Mapping in South Asia Advances in Earth Observation Data, Methods, and Approaches

January 10-14, 2013. NASA LCLUC Meeting @ the Karunya University, Coimbatore, Tamil Nadu, India.

Importance, Context, Need

Global Food Security in the 21st Century: Increasing Need of Cropland Areas and Agriculture Water for Food Security

Addressing the Global Food Security Challenge

- Next 50 years World needs to meet the food demand of a population which will grow from 7 billion in year 2011 to 9 or 10 billion by 2050. Three
- factors need to be noted:
- 1. Population growth (e.g., additional 2 to 3 billion);
- 2. Increasing nutritional demand (e.g., more meat);
- 3. Change in demographics (e.g., swift rise in population in Africa)

Global Food Security in the 21st Century: Increasing Need of Cropland Areas and Agriculture Water for Food Security

Increasing Cropland Areas Difficult

Ramankutty et al., 2002

current croplan<u>ds</u> potential croplands

..only @ Very High environmental/ecological costs....further high demand for land for alternatives uses (e.g., industry, urban, bio-fuel)

Source: Ramankutty et al., 2002; Foley, 2011

Global Food Security in the 21st Century: Increasing Need of Cropland Areas and Agriculture Water for Food Security

Addressing the Global Food Security Challenge

A critical and <u>urgent question</u> facing humanity in the twentyfirst century is, how can we continue to feed the World's ballooning populations in the twenty-first century:

- Without increasing cropland areas;
- Without increasing allocations for cropland water use;

Indeed, an <u>even better question</u> to ask is how can we continue to feed the World's ballooning populations in the twenty-first century by

- 1. Reducing the existing cropland areas for food production? (e.g., taken away for bio-fuels, urbanization), anclor
- 2. Reducing the existing water allocations for food production? (e.g., water needed to produce unit of grain in increasing as a result of increasing temperature in a changing climate)

Global Cropland Area Database @ 30m (GCAD30) Need for Multi-sensor High-resolution EO Data

The coarse resolution cropland maps have many limitations:

- Absence of precise spatial location of the cropland areas;
- Uncertainties in differentiating irrigated areas from rainfed areas;
- Absence of crop types and cropping intensities;

science for a changing world

U.S. Geological Survey U.S. Department of Interior

- Inability to generate cropland maps and statistics, routinely; and
- Absence of dedicated web\data portal for dissemination cropland products.

The listed limitations are a major hindrance in accurate/reliable global, regional, and country by country water use assessments that in turn support crop productivity (productivity per unit of land; kg\m²) studies, water productivity (productivity per unit of water; kg\m³) studies, and food security analyses. The higher degrees of uncertainty in coarser resolution data are a result of an inability to capture fragmented, smaller patches of croplands accurately, and the homogenization of both crop and non-crop land within areas of patchy land cover distribution. In either case, there is a strong need for finer spatial resolution to resolve the confusion.

Croplands: Seven Key Products for Global Food Security Studies

Global Cropland Area Database (GCAD30) Seven Key Products from Earth Observation data: World

Five main products and 2 derived products most essential for global food security studies

- 1. Cropland extent\area;
- 2. Crop types (8 major crops + others);
- 3. Irrigated versus rainfed;
- 4. Cropping intensities (e.g., single, double, triple, and continuous cropping; and
- 5. Cropland change over space and time;

Once we have the above,

6. Crop productivity: productivity per unit of land; kg\m²,

7. water productivity: productivity per unit of water or "crop per drop"; kg\m³

Global Cropland Area Database (GCAD30) Seven Key Products from Earth Observation data: South Asia

Five main products and 2 derived products most essential for global food security studies

- 1. Cropland extent\area;
- 2. Crop types (8 major crops + others);
- 3. Irrigated versus rainfed;
- 4. Cropping intensities (e.g., single double, triple, and continuous cropping); and
- 5. Cropland change over space and time;

Once we have the above,

6. Crop productivity: productivity per unit of land; kg\m²,

7. water productivity: productivity per unit of water or "crop per drop"; kg\m³

Croplands: Extent, Area Gobal versus South Asia

Global Cropland Area Database (GCAD30) Cropland Extent and Areas: World

Global Cropland Area Database (GCAD30) Cropland Extent and Areas: South Asia

Croplands: Irrigated vs. Rainfed Global versus South Asia

Global Cropland Area Database (GCAD30) Irrigated *versus* Rainfed Croplands, Spatial Distribution: World

India's Irrigated Croplands @ Finer Resolution Using MODIS 500m time-series for 2001-2003

Dheeravath, V., Thenkabail, P.S., Chandrakantha, G, Noojipady, P., Biradar, C.B., Turral. H., Gumma, M.¹, Reddy, G.P.O., Velpuri, M. 2009. Irrigated areas of India derived using MODIS 500m data for years 2001-2003. ISPRS Journal of Photogrammetry and Remote Sensing. http://dx.doi.org/10.1016/j.isprs.jprs.2009.08.004. in press. Corrected proof available online 22 September, 2009.

Science for a changing world

U.S. Geological Survey U.S. Department of Interior Irrigated Croplands of
India = 113 Mha
(annualized: season 1 + season 2 + continuous)

Croplands (irrigated + rainfed) of India = 170 Mha (includes irrigation intensity)

India's Croplands (irrigated + rainfed + permanent crops) @ Finer Resolution Using MODIS 500m time-series for 2001-2003

Uncertainties in areas can still exist even with higher resolution due to: (a) definition, (b) methods, (c) need for even finer resolution.

Generally, most studies agree that about 52% (about 170 Mha) of India's geographic area (328.7 Mha) are croplands around year 2000.

But most studies disagree on the proportion of Irrigated versus rainfed

Dheeravath, V., Thenkabail, P.S., Chandrakantha, G, Noojipady, P., Biradar, C.B., Turral. H., Gumma, M.¹, Reddy, G.P.O., Velpuri, M. 2010. Irrigated areas of India derived using MODIS 500m data for years 2001-2003. ISPRS Journal of Photogrammetry and Remote Sensing.

http://dx.doi.org/10.1016/j.isprsjprs .2009.08.004. 65(1): 42-59

Global Cropland Area Database (GCAD30) Irrigated *versus* Rainfed Croplands, Spatial Distribution: India

Sno	States/UTs	GIAM 10km Areas	GIAM 500m Areas	MoWI	R IPU Areas	
		AIA	AIA	Major	Minor	IPU (Major+Minor)
		X 1000 ha	X 1000 ha	X 1000 ha	X 1000 ha	X 1000 ha
1	Andhra Pradesh	12874	13378	3052	3380	6432
2	Arunachal Pradesh	20	151	0	46	46
3	Assam	538	4103	174	245	419
4	Bihar	8433	9680	1715	2886	4601
5	Chhattisgarh	3193	3602	761	412	1173
6	Gujarat	8470	7858	1301	2762	4063
7	Haryana	3731	4959	1850	2275	4125
8	Himachal Pradesh	181	120	8	179	187
9	Jammu & Kashmir	503	485	169	340	509
10	Jharkhand	2242	2681	230	291	521
11	Karnataka	6394	7663	1845	1787	3632
12	Kerala	332	152	559	411	970
13	Madhya Pradesh	16121	15390	876	3500	4376
14	Maharashtra	12756	13020	2147	3955	6102
15	Manipur	38	51	111	27	138
16	Meghalaya	19	106	0	70	70
17	Orissa	4254	4943	1794	622	2416
18	Punjab	5129	6375	2486	5764	8250
19	Rajasthan	9649	10391	2314	3925	6239
20	Tamil Nadu	7339	6738	1549	2385	3934
21	Uttar Pradesh	22578	26780	6334	14075	20409
22	Uttaranchal	404	375	185	481	666
23	West Bengal	6833	7381	1527	1946	3473
	Total	132,029	146,815	31,010	51,970	82,977

Table 1. Irrigated areas of major states of India compared between remote sensing derived approaches and national statistics (Dheeravath et al., 2010).

Note: AIA = Annualized Irrigated Area; IPU = Irrigation Potential Utilized;

MOWR = Ministry of Water Resources

Croplands: Intensity Global versus South Asia

Global Cropland Area Database (GCAD30)

Intensity of cropping: World

Global Cropland Area Database (GCAD30)

Intensity of cropping: World

Croplands: Crop Type Global versus South Asia

Global Cropland Area Database (GCAD30)

Crop Type Distribution: 4 Major crops that occupy ~55% of Total global Cropland Area (1.5 billion ha.)

....focus on these crops to increase crop productivity ("crop per unit of land") and water productivity ("crop per unit of water")

Global Cropland Area Database (GCAD30) Crop Type Distribution: Rice Crop in South Asian Countries

How much water do crops use?....specificity of crops and their geographic location key.

Murali Krishna Gumma, Andrew Nelson, Prasad S. Thenkabail and Amrendra N. Singh, "Mapping rice areas of South Asia using MODIS multitemporal data", J. Appl. Remote Sens. 5, 053547 (Sep 01, 2011); doi:10.1117/1.3619838.

U.S. Geological Survey U.S. Department of Interior Crop phenologies and intensities studied using time-series remotely sensed data illustrated for rice crop in South Asia. A clear and deep understanding of phenologies and intensities will require us to develop a temporal (e.g., this figure) and spectral (e.g., Figure 5) knowledge base of each crop in different agroecosystems of the world leading to mapping distinct classes within a crop, which in turn will lead to accurate assessments of green water use (rainfed croplands) and blue water use (irrigated croplands). [adopted from Gumma, Nelson, Thenkabail., 2011].

Global Cropland Area Database (GCAD30) Crop Type Distribution: Rice Crop in South Asian Countries

Rice map of India and neighboring countries (Gumma et al., 2011). The map shows 11 classes of rice cultivation covering 50.6 million Hectares [This is the harvested wetseason area only. The harvested rice area across all seasons where there is more than one rice crop (kharif and rabi in India; aman, boro, and aus in Bangladesh; and maha and yala in Sri Lanka) is almost 60 million hectares]. The two major types are irrigated and rainfed. The irrigated classes account for 24.2 million hectares and are further described by their irrigation type, such as surfacewater irrigation (from tanks, rivers. reservoirs), groundwater or irrigation (from wells or springs), and the cropping system, such as single rice, ricerice, or rice-other crop systems. The rainfed classes account for 26.4 million hectares and include areas that have some occasional supplemental irrigation from groundwater sources as well as upland/ dryland rice and deepwater rice areas as found in eastern Bangladesh.

Croplands: Change over space, time Global versus South Asia

Global Cropland Area Database (GCAD30) Monitoring Spatial Changes in Irrigated Areas over time: World

U.S. Geological Survey U.S. Department of Interior Center image of global cropland (irrigated and rainfed) areas @ 1 km for year 2000 produced by overlying the remote sensing derived product of the International Water Management Institute (IWMI; Thenkabail et al., 2012, 2011, 2009a, 2009b; http://www.iwmigiam.org) over 5 dominant crops (wheat, rice, maize, barley and soybeans) of the world produced by Ramankutty et al. (2008). The 5 crops constitute about 60% of all global cropland areas. The IWMI remote sensing product is derived using remotely sensed data fusion (e.g., NOAA AVHRR, SPOT VGT, JERS SAR), secondary data (e.g., elevation, temperature, and precipitation), and *in-situ* data. Total area of croplands is 1.53 billion hectares of which 399 million hectares is total area available for irrigation (without considering cropping intensity) and 467 million hectares is annualized irrigated areas (considering cropping intensity). Surrounding NDVI images of irrigated areas. The January to December irrigated area NDVI dynamics is produced using NOAA AVHRR NDVI. The irrigated areas were determined by

Global Cropland Area Database (GCAD30) Monitoring Spatial Changes in Irrigated Areas over time: South Asia

South Asia has 34% (~160 Mha) of global irrigated areas....you see the dynamics of irrigated areas of South Asia for one year, month by month.

U.S. Geological Survey U.S. Department of Interior Center image of global cropland (irrigated and rainfed) areas @ 1 km for year 2000 produced by overlying the remote sensing derived product of the International Water Management Institute (IWMI; Thenkabail et al., 2012, 2011, 2009a, 2009b; http://www.iwmigiam.org) over 5 dominant crops (wheat, rice, maize, barley and soybeans) of the world produced by Ramankutty et al. (2008). The 5 crops constitute about 60% of all global cropland areas. The IWMI remote sensing product is derived using remotely sensed data fusion (e.g., NOAA AVHRR, SPOT VGT, JERS SAR), secondary data (e.g., elevation, temperature, and precipitation), and *in-situ* data. Total area of croplands is 221 Mha of which 160 million hectares is total area available for irrigated areas (considering cropping intensity) and 467 million hectares is annualized irrigated areas (considering cropping intensity). Surrounding NDVI images of irrigated areas The January to December irrigated area NDVI dynamics is produced using NOAA AVHRR NDVI. The irrigated areas were determined by Thenkabail et

Global Cropland Area Database (GCAD30) Change of Time and Space over Long Time-periods: World

U.S. Geological Survey U.S. Department of Interior Global agricultural dynamics over 2 decades illustrated here for some of the most significant agricultural areas of the World. Once we establish GCAD2010 and GCAD1990 at nominal 30 m resolution for the entire world, we will use AVHRR-MODIS monthly MVC NDVI time-series from 1982 to 2017 to provide a continuous time history of global irrigated and rainfed croplands, establish their spatial and temporal changes, and highlight the hot spots of change. The GCAD2010, GCAD1990, and GCAD four decade's data will be made available on USGS global cropland data portal (currently under construction): http://powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract.

Global Cropland Area Database (GCAD30) Change of Time and Space over Long Time-periods: South Asia

U.S. Geological Survey U.S. Department of Interior Global agricultural dynamics over 2 decades illustrated here for some of the most significant agricultural areas of the World. Once we establish GCAD2010 and GCAD1990 at nominal 30 m resolution for the entire world, we will use AVHRR-MODIS monthly MVC NDVI time-series from 1982 to 2017 to provide a continuous time history of global irrigated and rainfed croplands, establish their spatial and temporal changes, and highlight the hot spots of change. The GCAD2010, GCAD1990, and GCAD four decade's data will be made available on USGS global cropland data portal (currently under construction): http://powellcenter.usgs.gov/current_projects.php#GlobalCroplandsAbstract.

Global Cropland Area Database (GCAD30) AVHRR Monthly Time-series Data and their Characteristics

Croplands: Water Use Global versus South Asia

Global Cropland Area Database (GCAD30) Cropland Water Use for Food Production by Country: World

Just 4 countries use 52% of cropland water use: India: 684 km³\yr, China: 364 km³\yr, USA: 197 km³\yr, and Pakistan: 172 km³\yr. However, per capita water use in USA is: ~2500 m³\yr\person whereas in India ~1000 m³\yr\person and China ~700 m³\yr\person

Global Cropland Area Database (GCAD30) Cropland Water Use for Food Production by Country: South Asia

Remember that 92% of all global human water use goes towards agriculture for food production (PNAS, Hoekstra et al., 2012)

Thenkabail and Gumma, 2012. PE&RS, Vol. 78, No.8 using data from Glieck, 2011

Just 4 countries use 52% of cropland water use: India: 684 km³\yr, China: 364 km³\yr, USA: 197 km³\yr, and Pakistan: 172 km³\yr. However, per capita water use in USA is: ~2500 m³\yr\person whereas in India ~1000 m³\yr\person and China ~700 m³\yr\person

Cropland Mapping Over Large Areas Strengths and Challenges for Earth Observation Data

Global Cropland Area Database (GCAD30) Remote Sensing Data Requirements:World

Masking and segmenting global terrestrial land to: (a) eliminate areas zero Of croplands (classes 8 and 9) that occupy 44% (4200)Landsat scenes of out 9550) of the total terrestrial land from analysis. **(b)** discern highly fragmented croplands in forests (class 6 with 17% terrestrial area) and deserts (class 7 with 12% terrestrial area), where ~5% of global croplands and (c) prioritize exist. areas of classes 1 to 5 (26% the terrestrial area) of where 95% of all global croplands exists with first 3 classes having ~75% and the next 3 ~20%.

 \sim 10 to 12% (1.5 to 1.7 billion hectares) out of the total terrestrial land area (14.894 billion

hectares) is currently cultivated. This is where we should focus of getting the EO data.

Global Cropland Area Database (GCAD30) Remote Sensing Data Requirements: World

Masking and segmenting global terrestrial land to: (a) eliminate areas of zero croplands (classes 8 and 9) that occupy just 2.2% (just 4 Landsat scenes out of 167) of the total terrestrial from analysis. land **(b)** discern highly fragmented croplands in forests (class 6 with 6% terrestrial area) and deserts (class 7 with 22% terrestrial area), where ~5% of global croplands and (c) prioritize exist. areas of classes 1 to 5 (69% the terrestrial area) of where 95% of all South Asian croplands exists with first 3 classes having ~56% and the next 3 ~13%.

167 Landsat images cover the 520 Mha area

 \sim 43% (221 million hectares) out of the total terrestrial land area (520 million hectares) is currently cultivated. This is where we should focus of getting the EO data.

Cropland Monitoring

Type of EO Data and their Characteristics, Some Examples

Joint Experiment for Crop Area Monitoring (JECAM)

Mission	Agency	Launch	Instrument	Bands	Swath (km)	Resolution (m)
Current Missions	s (in orbit)					
Optical Instrumen	tation					
Landsat-5	USGS, NASA	1984	TM	VIS, NIR, SWIR, TIR	185	30
SPOT-4	CNES	1998	HRVIR, Vegetation	VIS, NIR, SWIR	117,2200	10-20,1.15
Landsat-7	USGS, NASA	1999	ETM+	VIS, NIR, SWIR, TIR	185	30
Terra	NASA	1999	ASTER	VIS, NIR, SWIR, TIR	60	15
NMP EO-1	NASA	2000	Hyperion, ALI	VIS, NIR, SWIR	8,37	10,30
SPOT-5	CNES	2002	HRG, Vegetation	VIS, NIR, SWIR	117	5-10,1.15
ALOS	JAXA	2006	AVNIR-2	VIS, NIR	70	10
RapidEve	DLR	2008	MSI	VIS, NIR	78	6.5
ResourceSat-2	ISRO	2010	LISS-3, LISS-4	VIS, NIR, SWIR(3)	141,70	23.5,5.8
					/	
Radar Instrument	ation					
RADARSAT-1	CSA	1995	SAR	C-Band	500	8
ERS-2	ESA	1995	AMI/SAR	C-Band	100	30
Agua	NASA	2002	AMSR-F	C-Band, X-Band	1445	5-50
Envisat	ESA	2002	ASAR	C-Band	400	30
ALOS	14X4	2006	PALSAR	L-Band	360	7
RADARSAT-2	CSA MDA	2000	SAR	C-Band	500	2
COSMO-SkyMed 1	AST MID	2007	SAR	X-Band	200	1
COSMO-SkyMed 2	ASI, MID	2007	SAR	X-Band	200	1
TerraSAR-Y	DIR	2007	SAR	X-Band X-Band	100	4
COSMO-SkyMed 3	AST MID	2007	SAR	X-Band X-Band	200	1
DISAT-2		2000	SAR-Y	Y-Band	650	3
COSMO_SkyMod /		2009	SAR-A	X-Dand X-Band	200	1
COSINO-Skymed 4	A31, MD	2010	JAN		200	1
Euturo Missions	(planned)					<u> </u>
Ontical Instrumon	(plained)					
		2011	DAN WEL2		60.866	E 64
LDCM	INPE, CRESDA	2011	PAN, WFI-2	VIS, NIK	105	5,04
	ICDO	2012		VIS,NIR,SWIR; TIR	105	15,100
AWIFSSAT	ISRU	2012	AWIFS	VIS, NIR, SWIR	730	55
Sentinei-2A	ESA, EC	2013	MSI NET 2	VIS, SWIR	290	10
CBERS-4	INPE, CRESDA	2014	PAN, WFI-2	VIS, NIK	00,800	5,64
Sentinei-2B	ESA, EC	2014	MSI	VIS, SWIR	290	10
De de a Ta stances su t	- *!					
Kadar Instrument	ation	2011	0001	V. Deved	100	
KOMPSAT-5	KARI	2011	COSI	X-Band	100	1
RISAT-1	ISRO	2011	SAR	C-Band	240	3
Sentinel-1A	ESA, EC	2012	SAR	C-Band	400	9
RISAT-1F	ISRO	2012	SAR-L	L-Band		
HY-3A	NSOAS, CAST	2012	WSAR	X-Band	150	1
ALOS-2	JAXA, METI	2013	SAR	L-Band	360	1
TerraSAR-X2	DLR	2013	SAR	X-Band	100	4
RISAT-2F	ISRO	2013	SAR-X	X-Band	650	3
Sentinel-1B	ESA, EC	2014	SAR	C-Band	400	9
RISAT-3L	ISRO	2014	SAR-L	L-Band		
SMAP	NASA	2014	L-Band Radar	L-Band		
	1		1	1		1

Cropland Monitoring

Need of Very High Spatial Resolution (< 5 meter) EO data for Accuracy Assessments

Uncertainties, Errors, and Accuracies: A complete error analysis and validation is necessary in order to evaluate the sources of error, control them, and make effective use of the global cropland maps and statistics created. It is achieved through: (a) error matrix analysis, and (b) regression analysis. An error matrix (overall, producers, and user's accuracies).

Data used for accuracy assessments include: (i) 25% of the ~20,000 ground data points, (ii) thousand+ globally well distributed very high resolution (sub-meter to 5 meter) Commercial Imagery Derived Requirement (CIDR) Database of USGS, available free of cost to the project through the National Geospatial Intelligence Agency (https://warp.nga.mil/), (iii) our ongoing collaborative work over large areas (e.g., rice map of Asia; Figure 7), (iv) maps from national systems (e.g., USDA cropland data layer; see letters of support from global partners; also e.g., MoWR, 2011, MOA, 2010), and (b) 500, 5 x 5 kilometer samples used in global land cover products (Olofsson et al., 2011, Stehman et al., 2011).

Cropland Mapping Over Large Areas Advances in Methods and Approaches using Earth Observation Data

Cropland Classification Algorithms Existing and Evolving Methods

Known methods of crop classification techniques using time-series data:

- A. Fourier harmonic analysis, fast Fourier transformation (FFT);
- B. wavelet techniques (e.g., Jakubauskas et al. 2002, Olsson and Eklundh, 1994);
- C. principal component analysis, change detection analysis (Jensen, 2000);
- D. Artificial neural networks and decision trees (Defries et al., 1998, Mather, 2003); E. Decision Trees;

Evolving Automated Cropland Classification Methods:

- 1. Spectral matching techniques (SMTs); <---
- 2. Automated Cropland Classification Algorithms (ACCA); and
- 3. Ensemble of Machine learning algorithm (EMLAs) (e.g., decision trees, neural network); and
- 4. Classification and Regression Tree (CART).

Cropland Mapping Over Large Areas Spectral Matching Techniques (SMTs)

Spectral matching Techniques (SMTs) Gathering Field Data for Spectral Matching Techniques

Field-plot data points of India. The data collected in these plots include crop types, cropping intensity (e.g., single crop, double crop), watering source (irrigated vs rainfed), and a number of other parameters (e.g., digital photos) were also collected.

Thenkabail, P.S., GangadharaRao, P., Biggs, T., Krishna, M., and Turral, H., 2007. Spectral Matching Techniques to Determine Historical Land use/Land cover (LULC) and Irrigated Areas using Time-series AVHRR Pathfinder Datasets in the Krishna River Basin, India. Photogrammetric Engineering and Remote Sensing. 73(9): 1029-1040. (Second Place Recipients of the 2008 John I. Davidson ASPRS President's Award for Practical papers).

Spectral Matching Techniques (SMTs) Generate time-series Imagery (e.g., MODIS monthly NDVI MVC)

February NDVI MVC

March NDVI MVC

April NDVI MVC

Spectral matching Techniques (SMTs) Creating Ideal\target Spectra, Class Spectra and Matching the Them

Matching Ideal Spectra with Grouped class spectra's

Pheno-spectral Matching Technique (SMTs). **Illustration of double-crop** (DC) irrigation. The NDVI spectra of the 4 classes (C-26, C-28, C-30, and C-43) of DC irrigation are "matched" with ideal spectra (shown in yellow) for the same. Using **MODIS 250 m time-series** along with Landsat 30m data it is possible to create cropping intensities and crop calendars.

Other Methods: Space-time Spiral Curves (ST SCs) Class Identification and Labeling Process

Cropland Mapping Over Large Areas Automated Cropland Classification Algorithm (ACCA)

Automated Cropland\Fallowland Classification Algorithm (ACCA) Algorithm Development based on MODIS, Landsat, and Secondary Data

Delineating irrigated from others

Automated Cropland\Fallowland Classification Algorithm (ACCA) Algorithm Development based on MODIS, Landsat, and Secondary Data

Delineating rainfed from others

Irrigated + Rainfed Areas of Tajikistan: Full Country View Comparison: Truth Layer vs. Algorithm Derived Layer

Thenkabail, P.S.; Wu, Z. An Automated Cropland Classification Algorithm (ACCA) for Tajikistan by Combining Landsat, MODIS, and Secondary Data. *Remote Sens.* 2012, *4*, 2890-2918.

30 m spatial resolution

30 m spatial resolution

Note: Once you have the algorithm, it takes only a few minutes to derive irrigated and rainfed areas.

Irrigated + Rainfed Areas of Tajikistan: Zoom in View Comparison: Truth Layer vs. Algorithm Derived Layer

Note: Once you have the algorithm, it takes only a few minutes to derive irrigated and rainfed areas.

Automated Cropland\Fallowland Classification Algorithm (ACCA) ACL2007 (algorithm) versus CTL2007 (USDA CDL)

<u>Note</u>: once the data layer is ready, this layer was generated automatically by ACCA in about ~60 minutes on DELL Precision T7400 desktop

Cropland Mapping Over Large Areas Uncertainties and Overcoming Uncertainties using Earth Observation Data @ Various Resolutions

Uncertainties in Cropland Area Locations and Areas Use of Finer Spatial resolution Data to Reduce Uncertainty

Spatial Distribution of irrigated areas in different resolutions (Velpuri et al., 2009)

AVHRR 10 km

MODIS 500 M

LANDSAT 30 M

Irrigated areas in different resolutions 9.6 Resolution of data Mapped irrigated area (MHa) Landsat ETM+ 30 m (in meters) Area (M ha) 9.2 MODIS 500 m AVHRR 10,000 m 8.8 NOAA AVHRR10 km 8.09 8.4 v = -0.2535x + 9.0787**TERRA MODIS 500 m** 8.64 $R^2 = 0.99$ 8.0 LANDSAT ETM+ 30 m 7.6 9.36 -2 -1 Finer the spatial resolution greater is the area....since at finer resolution Sensor resolution log(Pixel area in Ha)

fragmented areas (from ground water, small reservoirs, and tanks) are picked

Uncertainties in Cropland Area Locations and Areas Use of Finer Spectral Resolution Data to Reduce Uncertainty

Uncertainties in Cropland Area Locations and Areas Use of Finer Spectral Resolution Data to Reduce Uncertainty

Exploring Hyperspectral narrowbands (HNBs) and hyperspectral vegetation indices (HVIs) that specifically Target Specific Plant Biophysical and Biochemical Properties

Publications

State-of-Art of Global Croplands and their Water Use Inter-linkages between Croplands, their Water use, and Food Security

Thenkabail P.S., Knox J.W., Ozdogan, M., Gumma, M.K., Congalton, R.G., Wu, Z., Milesi, C., Finkral, A., Marshall, M., Mariotto, I., You, S. Giri, C. and Nagler, P. 2012. Assessing future risks to agricultural productivity, water resources and food security: how can remote sensing help?. Photogrammetric Engineering and Remote Sensing, August 2012 Special Issue on Global Croplands: Highlight Article. Accepted. In press.

U.S. Geological Survey U.S. Department of Interior

American Society of **Photogrammetry** and Remote Sensing (ASPRS) PE&RS special issue on Global Croplands. August 2012, Vol. 78, No. 8. 773-782 **Guest editor:** Thenkabail

GIAM and GMRCA Peer-Review Publications: Book, Web Portal, Journal Articles

90097_cover 4/1/09 3:08 PM Page 1

Thenkabail. P., Lyon, G.J., Turral, H., and Biradar, C.M. 2009a. **Book** entitled: "Remote Sensing of **Global Croplands for** Security" Food (CRC Press- Taylor and Francis group, **Boca Raton, London,** New York. Pp. 556 (48 pages in color). Published in June,

Hyperspectral Remote Sensing Vegetation References Pertaining to this Presentation

Thenkabail, P.S., Lyon, G.J., and Huete, A. 2011. Book entitled: "Advanced Hyperspectral Remote Sensing of Terrestrial Environment". 28 Chapters. CRC Press- Taylor and Francis group, Boca Raton, London, New York. Pp. 781 (80+ pages in color).

