Mapping paddy rice fields and cropping intensity using google earth engine

Miao Zhang, Xin Zhang, Bingfang Wu, Hongwei Zeng, Fuyou Tian, Chong Liu Aerospace Information Research Institute, Chinese Academy of Sciences July 23rd 2019

Rice as a staple food

Difficulties in data acquisition: frequent cloud cover over rice growing regions

Rice calendar is dynamic and might be same as other summer crops

Inhomogeneity and fragmented rice fields

Rice is commonly cultivated in many countries in Asia

Major rice producing provinces

Rice growing season and rainy season

Availability of optical data

June 8, 2017

Source https://remotepixel.ca/

Feature of rice field using Sar

Calendar of rice is similar to maize, soybean and other summer crops; Crop spectral feature is also similar

But rice field is unique during planting period (covered by water); SAR data is sensitive to water body, water content, etc

Key points

Rice phenological parameters and empirical threshold derivation for rice classification.

Nelson, A., et al., 2014. Land Applications of Radar Remote Sensing.

Huang., et al., 2013.

Data composition

Ē

- Monthly composite
- Percentile composite

Data sources

Sensors	Band	Use Wavelength		Res	Provider
Sentinel-2 MSI	B2	Blue	490 µm	10m	ESA
	B3	Green	560 µm	10m	_
	B4	Red	665 µm	10m	_
	B8	Near Infrared	842 μm	10m	_
	B11	Short-wave Infrared 1	1610 μm	20m	_
	B12	Short-wave infrared 2	2190 μm	20m	_
Landsat 8 OLI	B2	Blue	0.45 - 0.51 μm	30m	USGS
	B3	Green	0.53 - 0.59 μm	30m	_
	B4	Red	0.64 - 0.67 µm	30m	_
	B5	Near Infrared	0.85 - 0.88 µm	30m	_
	B6	Short-wave Infrared 1	1.57 - 1.65 μm	30m	_
	B7	Short-wave infrared 2	2.11 - 2.29 μm	30m	_
Sentinel-1 C	VV	dual-band cross-polarization, vertical		10m	ESA
	VH	transmit/horizontal reco	eive	10m	_
SRTM	Evelat	ition			NASA/USG
Landsat	Hansen Global Forest Change			30m	GEE
Landsat	JRC Global Surface Water Mapping			30m	GEE

Sensors(1 st March to 3	0 th November, 2017)	Heilongjiang	Huan	Guangxi	
Landsat 8 OLI	Scenes	752	187	209	
	Footprints	53	21	20	
Sentinel 2 MSI	Scenes	4116	1411	1580	
Sentmel-2 MSI	Footprints	86	41	48	
Sentinel-1 C-band	Scenes	828	364	340	
	Mode	Interferometric Wide swath \Box IW \Box			
	Orbit Properties	Descending	Ascending	Ascending	

Satellite data used

Sentinel – 1: 5532 scenes
Sentinel – 2: 20209 scenes
Landsat – 8: 869 scenes

 Online processing on Google Earth Engine

Feature analysis

- Monthly mean value for SAR backscatter ecoefficient
- Layerstack to get time series monthly SAR backscatter ecoefficient

- Filter ImageCollection for each month;
- ImageCollection.mean()

Hunan

Feature analysis

- Percentile composite
- Time series smoothing
- ee.Reducer.percentile()

Hunan

Heilongjiang

Pixel based + object based classification

 $lable = \begin{cases} mean \ge 0.6 & rice \\ mean < 0.6 & no rice \end{cases}$

the pixel-based classification from random forest classifier;(c) the object-based SLIC image segmentation result and (d) the merged results with SLIC segmentation result with pixel-based Random Forest classification.

Rice mapping

Early rice

Single/Semi-late rice

Late rice

Accuracy assessment

- In situ data: 80% of samples used for training \Box 20% for validation
- Overlap the two to calculate the number of samples classified correctly and wrong
- To generate confusion Metrix

$$OA = \frac{S_d}{n} \times 100\%$$
$$UA = \frac{X_{ij}}{X_j} \times 100\%$$
$$PA = \frac{X_{ij}}{X_i} \times 100\%$$
$$F_{score} = \frac{UA \times PA}{UA + PA} \times 2$$

where Sd represents the total number of correctly classified pixels, n represents the total number of validation pixels, and Xij represents an observation in row I and column j in the confusion matrix; Xi represents the marginal total of row I, and Xj represents the marginal total of column j in the confusion matrix.

Accuracy

Accuracy

Heilongjiang		Field Data					
		Other Crops	Rice		Total	User Accuracy	
Other crop		870	33		903	96.35%	
Map Data	Rice	50	298	298		85.63%	
Total		920	331		1251		
Producer Accuracy		94.57%	90.03%				
Overall Accuracy		93.37%	F score			87.78%	
Hunan -		Field Data					
		Other Crops	Single Rice	Double Rice	Total	User Accuracy	
	Other crops	5	5	0	95	94.74%	
Map Data	Single rice	130	130	6	139	93.53%	
	Double rice	15	15	50	69	72.46%	
Total		97	150	56	303		
Producer Accuracy		92.78%	86.67%	89.29%			
Overall Accuracy		00 110/	Eccore	Single rice		89.97%	
		09.11 /0	r score	Double r	ice	80.00%	
Guangxi		Field Data					
		Other Crops	Rice		Total	User Accuracy	
Map Data	Other crops	280	5		285	98.25%	
	Rice	11	60		71	84.51%	
Total		920	331		1251		
Producer Accuracy		96.22%	92.31%				
Overall Accuracy		95.51%	F score		88.24%		

Zhang et al., 2018;

Cropping intensity (ongoing)

- Mapping at 30 m spatial resolution
- Adaptive for different agriculture systems: dry/wet, large farm/smallholder
- Flexible for multiple satellite sensor integration

Thanks for your attention!

The authors acknowledge the financial support from the National Key Research and Development Program (No. 2016YFA0600302), and the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19030201)

Contacts: zhangmiao@radi.ac.cn; wubf@radi.ac.cn;