MAPPING AND MONITORING RICE ECOSYSTEMS TO DRIVE DECISION SUPPORT TOOLS

NATHAN TORBICK WILLIAM SALAS, PETER INGRAHAM, DIYA CHOWDHURY

INTERNATIONAL LAND COVER / LAND USE CHANGES REGIONAL SCIENCE TEAM MEETING IN SOUTH / SOUTHEAST ASIA JANUARY 2016 YANGON, MYANMAR

<u>Background</u>

Synergistic projects

- NASA SBIR (NNX14CS01C).: Rice Decision Support System (RiceDSS): Support global food security programs, disaster management, and commodity markets with fused rice info from EO, weather, and crop models
- 2. NASA LCLUC: Mapping LCLUC and sensor fusion in South Asia
- 3. USAID: Developing GHG Monitoring, Reporting, and Verification (MRV) and landscape accounting tools

Presentation Outline

A. Multiscale rice mapping with snapshot examples in S. Asia and USA

B. Modeling rice greenhouse gas (GHG) application in Red River Delta (RRD), Vietnam

Red River Delta Multiscale Imagery

Multi-temporal remote sensing key for rice monitoring

Multi-scale Earth Observation integration work flow

Collecting field training data for cal val, Ground Truth, surveys

http://www.eomf.ou.edu/photos/

Mobile Apps for Geofield photos; U. Oklahoma, Xiangming Xiao

DOY vs. LSWI for Corn, Cotton and Rice in Sacramento, 2009

Near real time comparisons against NASS

Annual Producer Accuracy (left) and User Accuracy / Reliability (right) of real-time rice extent mapping routine using Landsat imagery from 2007-2012 compared against NASS CDL for California.

Difference between CDL and tclass pixel % Rice, 2010/162

100

80

60

40

20

0

-20

-40

-60

-80

-100

Difference between CDL and tclass pixel % Rice, 2011/173

The DNDC Model [gramp.org.uk]

<u>Background</u>

- **DNDC** stands for **DeN**itrification-**DeC**omposition
- DNDC is a soil biogeochemical model that has been used for quantifying GHG emissions from agricultural
- DNDC is a process (as know as mechanistic) model that simulates the biogeochemical processes to drive C and N cycling in agricultural soils.
- Long history of peer-reviewed publications (well over 200 publications).

Use for Rice Emissions Modeling

1. What is the rice GHG footprint in RRD?

2. How can multiscale RS improve parameterization and spatiotemporal drivers?

- DNDC can simultaneously simulate anaerobic (flooded) and aerobic (non-flooded) conditions in soils.
- DNDC can model both Methane and Nitrous Oxide emissions: critical for rice agroecosystems.
- DNDC has been extensively validated for rice globally.

Rice: CH₄ production and emission (REDOX < -100 to -200 mv)

Driving DNDC with Earth Observations for GHG Assessment

Crop calendar (1st crop planting DOY)

RRD 2015 Rice CH₄ Emissions

<u>Summary</u>

- PALSAR-2, Sentinel-1, Landsat 8 fusion high LULC accuracy
 - Multitemporal required for mapping rice attributes
 - Suite of parameters: extent, hydroperiod, intensity, calendar
- RRD GHG footprint characterized and uncertainty reduced with EO compared to IPCC Tier 1 approach
- Tuning & evaluating forecasts for select hot spots this upcoming year
- Open source tools, tech transfer, Decision Support Tools
 - Transition research to operational domain
 - github.com/Applied-GeoSolutions
 - Web-mapping, mobile, cloud,...

Please let me know if you are interested in applications & coordination <u>ntorbick@ags.io</u>

Thanks to our hosts, NASA SBIR, NASA LCLUC program.

Questions?

