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RETRIEVING LEAF BIOCHEMICAL CONSTITUENTS CANOPY REFLECTANCE, STRUCTURE AND NITROGEN

The effect of canopy structure on canopy reflectance is very strong. If its effect is

removed, scattering is negatively correlated with nitrogen: the more N, the more leaf

absorbs and the darker it is.
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LEAF OPTICS AND NITROGEN

Measured leaf albedos from a control and an irrigated&fertilized plot taken during an international field campaign in Flakaliden, Sweden, June 25–July 4, 2002

[2]. The red dotted lines show relative differences of leaf albedo between the plots. A positive difference in the RED spectral interval (left plot) is due to positive

difference in the specula reflection.

The light reflected by a leaf comes from interaction with the leaf surface and with leaf interior. The

surface scattered light (specular reflection) never enters the leaf, displays no spectral dependency

and its fraction (3-10%) is determined by the properties of the leaf surface. Light that diffusely

reflected by the leaf interior varies spectrally according to the absorption spectra of leaf

biochemical constituencies.
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Ground data was collected at 20x20 m plots

Specular component of leaf scattering should be accounted in order

to retrieve concentrations of leaf biochemical constituents. Since

surface scattered light is partially polarized, polarization

measurements of plant canopy provide the required information

which can be used to reduce uncertainties in monitoring canopy

nitrogen.

Panel (a). Correlation between canopy nitrogen and in-situ

Broadleaf fraction of LAI (BfLAI). The positive tendency is due the

positive difference in nitrogen content of an average leaf (2.17 g per

100 g of dry leaf mass) and needle (1.24 g per 100 g of dry leaf

mass). From [4].

Panel (b). Correlation between canopy gap density (CGP) and in

situ BfLAI. The CGP was derived from AirMISR and AVIRIS data.

Note that the BfLAI is labor intensive while the ratio not. [5-7]

Panel (c). Correlation between canopy nitrogen and CGP. (From [4])

INTRODUCTION

Correlation between canopy Bidirectional Reflectance Factor (BRF) and canopy nitrogen

concentration. The BRF was derived from the AVIRIS hyperspectral sensor acquired over

forested plots located in the eastern US and Washington state. The plots represent dense

patches of forest over a 20 x 20 m plot [1]. The color bar represents canopy structure

determined by the canopy gap density derived from the multi-angle reflectance and

hyperspectral data data.

A high correlation has

been found between

canopy NIR reflectance

and canopy nitrogen [1].

Question: What is the

mechanism behind the

observed correlation?

CANOPY STRUCTURE AND NITROGEN

Leaf nitrogen content can vary by the

species type. Species fractions therefore

become an important factor responsible for

variation in the canopy nitrogen

concentration. This information can be

obtained from hyperspectral and multi-

angle data.
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From [3]

Chlorophyll a&b: 42 mg/cm2

Dry matter: 0.0047 g/cm2

Water thickness: 0.01 cm-1

Relative RMSE: 9.6%

Uncertainty in BRF: 4.7%

NIR (800-850 nm)
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