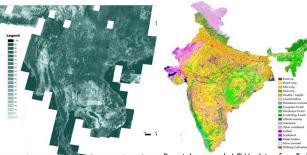
LCLUC and its Effects on Carbon & Nitrogen Dynamics in Monsoon Asia Region

Atul Jain^{1*}, Prasanth Meiyappan¹, Ramakrishna Nemani², Sangram Ganguly², David Skole³, Walter Chomentowski³, Brian O'Neill⁴

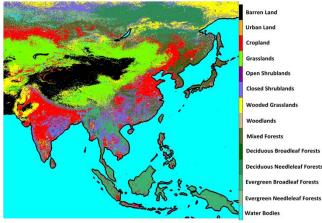

¹University of Illinois at Urbana-Champaign, ²NASA Ames, ³Michigan State University, ⁴NCAR

Objectives

Use data-modeling framework to pursue three principal objectives:

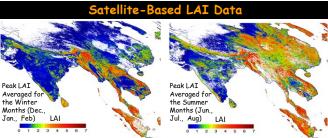
- > Improve our understanding of the historical effects of land cover and land use change (LCLUC) dynamics on the quantities and pathways of biogeochemical carbon and nitrogen fluxes
- achieve by linking the satellite-based historical rates of LCLUCs with the biophysical model
- > Project future LCLUC in the study region in the next 50 years
- achieve by linking the biophysical and socio-economic models
- > Quantify the impacts of current and future LCLUC on carbon and nitrogen dynamics in the study region
- achieve by applying an improved version of the biophysical model

Satellite-Based LCLUC Date

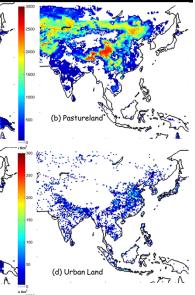

Remotely sensed forest fraction data for South East Asia at 30 m resolution (2005) based Landsat satellite

Remotely sensed LCLU data for India region at 56 m resolution (2004-2005) based on Indian satellite IRS-P6 (AWiFS) (Courtesy: P.S. Roy, ISRO)

(c) Wood Harvest


(e) Secondar

Forest

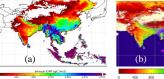


MODIS LCLU data resampled at 250 meter resolution for the year 2005. The land classifications are based on University of Maryland scheme

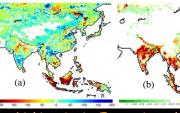
*Email: jain1@illinois.com



Monthly climatological (2003-2008) LAI values for monsoon Asia region are estimated using a radiative transfer model. The input to the model are 250 m MODIS surface reflectance data, 250 m MODIS resampled LC data. All the data and modeling simulations are performed ing the TOPS modeling framework on NASA's Earth Exchange (NEX) platform


- LCLUCs due different human activities compiled based on different sources. The data is compiled over the period 1765-2005. The data is shown here for the year 2005 in unit km². The sources for different data sets are :
- (a) Cropland updated based on Ramankutty, N., and J.A. Foley (1999),
- (b) Pastureland Ramankutty, N., and J.A. Fole (personal communication), (c) Wood harvest - Hurtt et al. (2006), (d) Urban land - Goldewijk et al. (2010),
 - (e) Secondary forest Yang et al (2010).

ISAM Land Surface Model


Calculate fluxes of carbon, nitrogen energy, water, and the dynamical processes that alter these fluxes 21 Biome types 0.5 x 0.5 degree resolution 30 minutes temporal scale Season-to-interannual variability (penology) <u>References</u> Jain and Yang (2005, GBC) Jain et al. (2005, GRL) Jain et al. (2006, JGR) Jain et al. (2009, GBC) Yang et al (2009, GBC) Yang et al.(2010, Biogeoscience)

ISAM Model Estimated GPP vs. MODIS Data

Comparison of (a) ISAM estimated annual GDD averaged for the time period 2000-2006 with (b) MODIS GPP. MODIS GPP figure (b) is directly downloaded from the MODIS data website

ISAM Model Estimated C & N2O Emissions due to LCLUC

ISAM estimated (a) C emissions (Unit: qC/m²/yr), N₂O (Unit: emissions kg N/ha/vr) from LCLUCs in the 2005. Positive values represent net C/N release atmosphere and negative values represent net C/N storage in the terrestrial biosphere

LINOIS

UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN

- Input A2 ;and use input assumptions - IIASA
 - Economic & land data GTAP

PET Model IPCC A2 LU Scenario Development:

Computable General Equilibrium model

Energy data - IEA

MICHIGAN STATE

UNIVERSITY

NCAR

9 world regions

5 economic sectors

PET-ISAM IPCC A2 Scenario Result

