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Project at a Glance
•Objective: Create a 30 m resolution map of LAI at a 2-week
interval for a study-site in the NC piedmont.

•Method: A novel multi-sensor fusion approach blending
Ikonos, Landsat and MODIS imagery.

• Texture is a surrogate for canopy structure and is a complimen-
tary estimator to spectral indices.

•Multiple regression using multiple SVI and texture measures can
leverage complimentary information.

•AIC based model-selection can reveal alternative, good models.

•Our model is simple to apply and successful in producing rea-
sonable maps of LAI at an arbitrary temporal resolution.

Motivation

Ecosystem process simulations on local- to regional-scales require high
spatial and temporal resolution maps of LAI to achieve reliable simulation
results. The tradeoff between achievable spatial and temporal resolutions
from remote sensing platforms has stimulated research into multi-sensor
fusion models. We propose a novel method of LAI estimation which com-
bines complimentary information from remotely sensed imagery spanning
three orders of magnitude in spatial resolution. Texture information from
high-resolution Ikonos imagery and spectral information from moderate
resolution Landsat TM imagery is used to capture the fine-scale spatial
variability in LAI, and coarser resolution MODIS data is used to extract
the temporal signal of phenological change. This study demonstrates that
the use of multiple SVI as well as texture information can significantly
improve LAI estimation when compared with conventional approaches.
We used the model to construct 30 m spatial resolution LAI maps at a
2-week interval for a study-area in the NC piedmont. The model is simple
to run, not data intensive, and produces reasonable estimates of the time
evolution of LAI throughout a growing season.
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Figure 1: Left Panel: May, 19 2009 Landsat TM composite of study-area (10 km x 10 km ex-
tent of Ikonos image). Right Panel: The Duke Forest research area where ground-observations
of LAI were made. Sampling plots are shown on the panchromatic Ikonos image.

Model Overview

Separate empirical models for conifer and deciduous forest types are fit
to ground observations using a combination of spectral and spatial infor-
mation from Landsat and Ikonos imagery and used to generate a map of
maximum LAI (Eq. 3). A deciduousness parameter is calculated (Eq. 6)
and used to mix LAI contributions from conifer and deciduous vegetation
within a given pixel (Eq. 1). A phenological function (Eq. 4 and 5) is used
to adjust an individual pixel’s LAI between it’s minimum and maximum
values for an arbitrary day, t, during the growing season (Eq. 2).

LAI(t) = (1− Ω)LAIc(t) + ΩLAId(t) (1)

LAIc,d(t) = LAImin
c,d + fc,d(t)

[
LAImax

c,d − LAImin
c,d

]
(2)

LAImax
c,d = β0 + β1SVI1 + β2SVI2 + β3TEX (3)

fc,d(t) = MODSVIc,d(t) → [0, 1] (4)

MODSVIc,d(t) =

(
1

1 + ea−bt
− 1

1 + ea′−b′t

)
g + h (5)

Ω =
NDVIsummer − NDVIwinter
NDVIsummer + NDVIwinter

→ [0, 1] (6)

Empirical LAI Model

We use two innovative techniques to fit an empirical model to ground
measured LAI: 1) we utilize image texture from high-resolution imagery
to compliment multiple SVIs in a multiple regression framework, and 2)
we adopt the information theoretic criteria approach to model selection.
Ground-based estimates of effective LAI were obtained for a mixture of
homogenous evergreen and deciduous plots (n = 33) using indirect optical
techniques (LAI-2000). Field campaigns were conducted in late June and
July of 2009. Landsat TM imagery was obtained to coincide with the field
collections and atmospherically corrected using a dark-object subtraction
approach with downwelling diffuse radiation calculated using 6S.
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Figure 2: Semivariograms for deciduous (left) and pine (right) calculated at four spatial resolu-
tions on 250x250 pixel samples from the Ikonos image. The effect of regularization is to lower the
overall variance in the sample (sill) and increase the range. Note the significantly smaller spatial
scale of the pine spatial pattern.

Eight multiple regression models were proposed to fit the observed LAI
data. We allowed models to have two SVI predictors, the first being either
the simple ratio (SR), or reduced simple ratio (RSR), and the second being
either the structural index (SI), or enhanced vegetation index (EVI). Ad-
ditionally, half of the models included a texture predictor (VAR). We chose
to use a first-order measure of image texture, windowed variance, although
alternatives such as GLCM features have also demonstrated effectiveness
in estimating canopy structure. We determined the window size based on
empirical semivariograms at various pixel resampling sizes (Fig. 2) as well
as images of windowed variance over the study area (Fig. 3). The models
were fit and ranked via AIC (Table 1). Texture information leads to a
significant improvement in estimating deciduous LAI, whereas conifer LAI
is best predicted using SVI alone (Fig. 4).
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Figure 3: Variance calculated on 1 m spatial resolution Ikonos panchromatic image at three
window size: 13, 21 and 33 pixels. Note the differences in color-scale for each.

Table 1: Candidate models ranked by AICc and associated parameter estimates. All models have
effective LAI (Le) as the dependent variable. Sig: ***: <0.001, **: <0.01, *: <0.05, ·: <0.1

Model Parameters Rank AICc AIC Weight R2

SEV SRc SRd EVIc EVId VARc VARd 1 87.4 0.71 0.73
1.0e1∗∗∗ 2.9· -1.0e2∗∗∗ -4.8e1∗ -1.6e-5 1.1e-4∗∗

REV RSRc RSRd EVIc EVId VARc VARd 2 90.0 0.20 0.71
5.2∗∗∗ 1.7 -3.0e1∗ -1.8e1∗ -3.2e-5 9.6e-5∗∗

SE SRc SRd EVIc EVId 3 92.5 0.05 0.61
1.0e1∗∗∗ 4.3e-1 -1.0e2∗∗∗ -8.3

RE RSRc RSRd EVIc EVId 4 93.7 0.03 0.59
5.1∗∗∗ 2.0e-1 -3.4e1∗ -3.7

RS RSRc RSRd SIc SId 5 100.4 <0.01 0.50
1.3 4.8e-1 3.7 0.7

RIV RSRc RSRd SIc SId VARc VARd 6 101.1 <0.01 0.59
3.3 -1.8e-1 8.3e-1 -2.2 -5.5e-5 6.0e-5

SIV SRc SRd SIc SId VARc VARd 7 101.5 <0.01 0.59
-1.2e-1 -4.6e-1 7.4∗∗ 2.4e-1 -3.6e-5 6.8e-5·

SI SRc SRd SIc SId 8 189.8 <0.01 0.33
1.7∗∗∗ 2.0e-1· 8.3e-1∗∗ -6.2e-2
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Figure 4: Comparison of observed and predicted Le using models SE (A) and SEV (B). Model
SEV contains a texture estimator which leads to a significant improvement in model fit for deciduous
stands.

Phenology

We fit the difference logistic function (Eq. 5) to MODIS NDVI. The VI
Reliability Index was used to limit calculations to reliable pixels only, and
the MOD12 Landcover product (Type 1) was used to construct separate
time-series of deciduous and evergreen vegetation. Daily mean values of
NDVI were calculated by using the Composite DOY product. Further
filtering was necessary to remove outliers and dates for which there were
less than 20 pixels available for calculation of the mean (Fig. 5). The re-
sulting time-series were fit using weighted nonlinear least squares methods
where the weights are determined as the reciprocal of the sample mean
(i.e., Ni/σ

2). It was found that the evergreen and deciduous time-series
had identical temporal trajectories, so we use the deciduous model for both
evergreen and deciduous LAI estimation.
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Figure 5: Left panel: Mean NDVI for MOD12Q1 Type 1 Deciduous forests indicating points
omitted from fitting procedure by outlier detection (Tukey IQR method) or too few pixels used in
calculation. Right panel: Full range of fitted data. Point sizes indicate the relative weight used in
the nonlinear least squares fit. Dashed line is fit.

Results

We used the full model to estimate maps of LAI at a 2-week interval for
the study-area. Fig. 6 shows four such maps at select temporal intervals.
Two Ameriflux sites within the study-area have a daily record of LAI for

deciduous and conifer plots. We compared these records to our daily es-
timates of LAI at these plots (Fig. 7). Our model does a good job of
capturing both the temporal trend as well as the magnitude of LAI at
these plots. However, for the deciduous stand, we note a longer senescence
period for our model than is indicated by the ground observations. This
is likely due to understory herbaceuous and evergreen vegetation which
becomes visible to the satellite sensor as the overstory canopy sheds its
leaves.
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Figure 6: LAI map of the study area at four select dates throughout the growing season. Mini-
mum, green-up, peak and senescence phases of the vegetation are depicted.
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Figure 7: Validation data from Duke Ameriflux towers.

Conclusions and Future Directions

•We demonstrate that texture indices lead to significant improvements
in the estimation of LAI, particularly for deciduous vegetation. Texture
acts as a surrogate for canopy structure and contains information about
crown size and stocking density. We show that empirical variograms on
representative textures are useful for determining texture parameters
such as window size and resampling resolution.

• The successive filtering steps we applied to MODIS NDVI 16-day com-
posites allow for the extraction of smooth time-series suitable for de-
termining stable parameters of phenological functions. That evergreen
and deciduous time-series were temporally identical indicates that there
is a substantial amount of mixed or misclassified pixels in the MOD12
landcover product, and that it may be unsuitable for this application.

•Overall, our method represents a very simple method for fusing compli-
mentary remote sensing information from three distinct spatial resolu-
tions. This method has demonstrated its effectiveness in representing
the magnitude and temporal signature of LAI production.

• Future improvements should focus on improving the phenological time-
series data by using improved landcover classifications. Additional val-
idation, particularly in mixed stands, will improve confidence in our
modeling approach.


