

Spatial and Temporal Dimensions of Contemporary U.S. Land Cover/Land Use Change and Implications for Carbon Dynamics

Tom Loveland and Shuguang Liu USGS EROS Data Center, Sioux Falls, SD

NASA, EPA, USGS Partnership

Land Cover Trends/Carbon Implications Research Team

- Tom Loveland Principle Investigator, Geographic Assessment
- Shuguang Liu Carbon Assessment
- Terry Sohl Change Analysis, Sampling
- Kristi Sayler Change Analysis, Biophysical Variables
- Alisa Gallant Change Analysis, Landscape Pattern Analysis
- Greg Zylstra Biophysical Variables, Radiometry
- Darrell Napton (SDSU) Driving Forces, Consequences
- Steve Stehman (SUNY Syracuse) Sampling, Accuracy Assessment

Research Objectives

Land Cover Change Assessment - Document the types, geographic distribution, and rates of 1970's to 2000 U.S. land use and land cover change in order to answer the following:

- What are the spatial and temporal dimensions of land use and land cover change?
- What are the regional driving forces of contemporary land use and land cover change?

Research Objectives

Carbon Dynamics Assessment – Isolate and identify the explicit role of local land use/land cover change in affecting contemporary regional and national carbon dynamics across the U.S.

- What are the spatial and temporal distributions of carbon sources and sinks?
- What are the mechanisms that cause these distributions?
- What are the uncertainties in carbon dynamics related to LU/LC change?

Methodology

Spatial Framework

- Omernik ecoregions; probability sample of 20 km by 20 km blocks allocated by ecoregion
- Land Cover Assessment
 - Analyze change for each sample using 1973, 1980, 1986, 1992, and 2000 Landsat MSS, TM, ETM+.
 - Hybrid contextual change vector/manual interpretation approach.

Sampling Strategy

- Random selection of 20 km by 20 km blocks for each ecoregion.
- Sample size of approximately 800 blocks based on:

```
k=1/(1/k<sub>o</sub> + 1/K)

k=planned sample size

K=number of blocks in ecoregion

k_o=(z^{\text{pr}}/m)^2 with:

z = \text{percentile from the normal distribution (0.85)}

z = \text{StDev of the number of change pixels per block m = margin of error (±1.0%)}
```


C Omernik Level III Entregion Broaday o 20 km X 20 km sample site United States Land Cover Trends Month Cultivated Natural Graveland/Herbsowse FallonyBarr Field UrbanyDherr Graws Wondy Wetland Inchaorous Wetland East Cops Sreall Crates Shrubland | High-Intends Senidertial | | Commencial/Indens/Transport, | Base Best/Sang/Clay | Serig Mine/Quany/Genes PH | Transitional Barran - Law-leterally Residential Personal LogScow Evergrees forest Decidants Forest Open Water

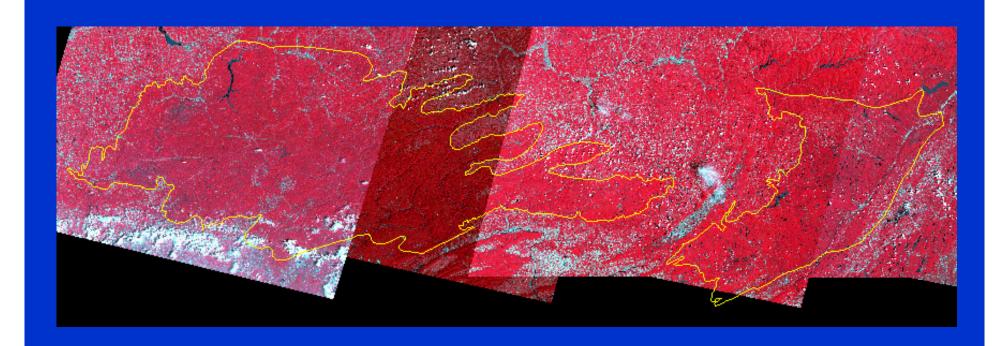
Land Cover Variables

General land cover types

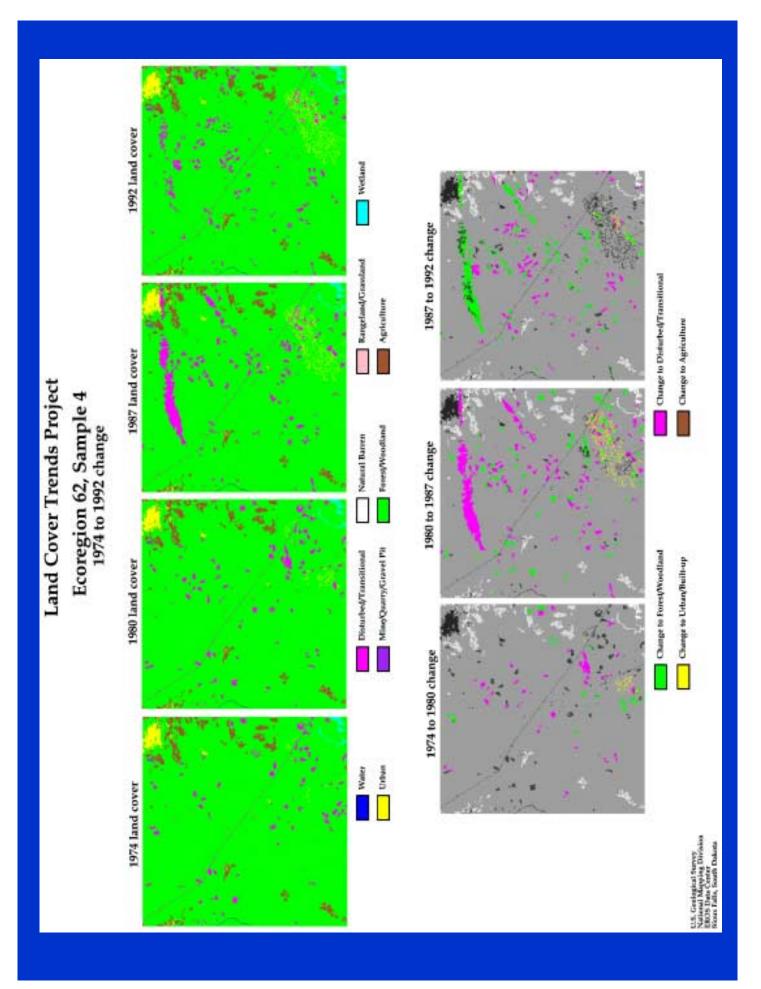
- Developed/built-up
- Agriculture
- Forest and woodland
- Rangeland/grassland
- Wetland
- Water bodies
- Snow and ice
- Natural barren
- Mined lands
- Mechanical disturbed or transitional
- Non-mechanical disturbed or transitional

Methods, Carbon Assessment

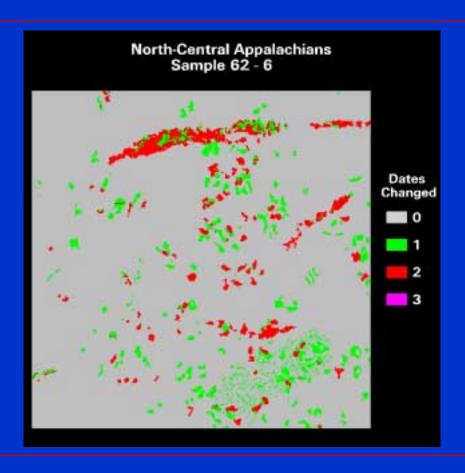
- Carbon Dynamics Assessment
 - Develop land cover, land use, soils, and climate data sets for each 20x20 km sample block.
 - Apply cohort-statistical-simulation (CoSim) method to develop joint frequency distributions for CENTURY model parameters.
 - Apply CENTURY model to estimate carbon dynamics for each sample site, assess the variability of carbon responses to land use change, and determine confidence limits on simulated results.
 - Summarize ecoregion-wide carbon dynamics.



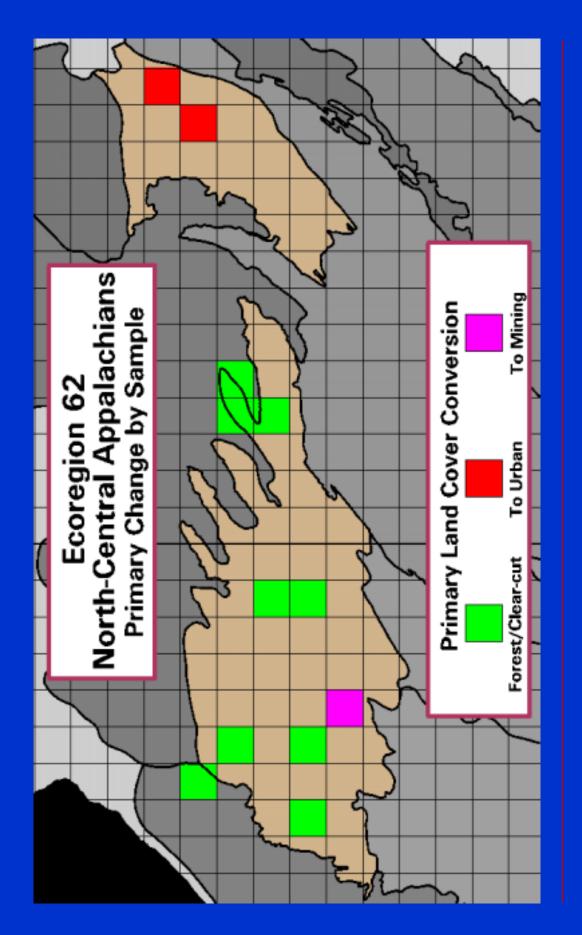
Data Requirements


- Landsat Data
 - 1973, 1980, 1986, 1992 MSS (NALC)
 - 1992 TM, 2000 ETM+ (MRLC)
- County Statistics
 - Population
 - Agricultural characteristics
 - Employment by economic sector
 - Housing (e.g., total units, occupied units)
- STATSGO soil polygons, attributes
- National Climate Data Center precipitation and temperature data
- National Atmospheric Deposition Program atmospheric nitrogen

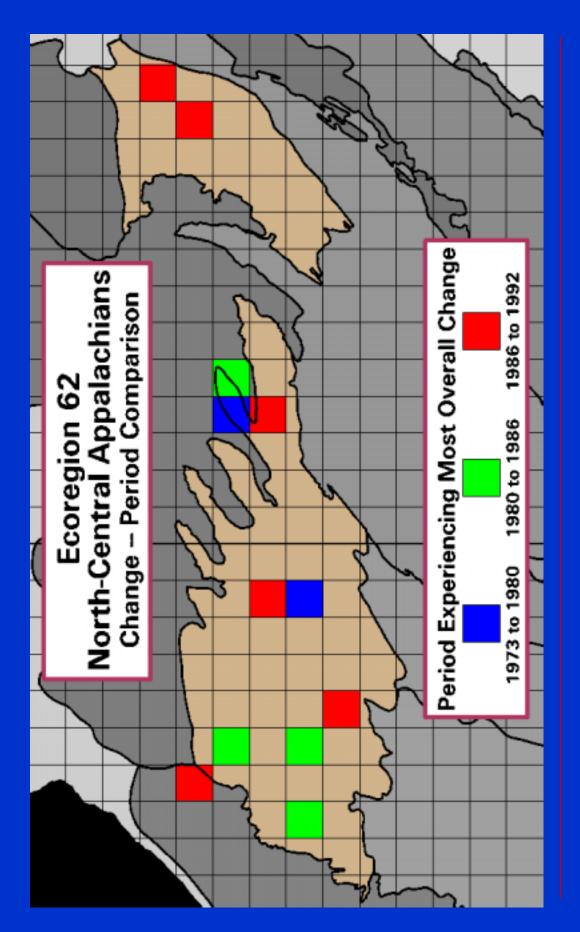
North Central Appalachians Ecoregion

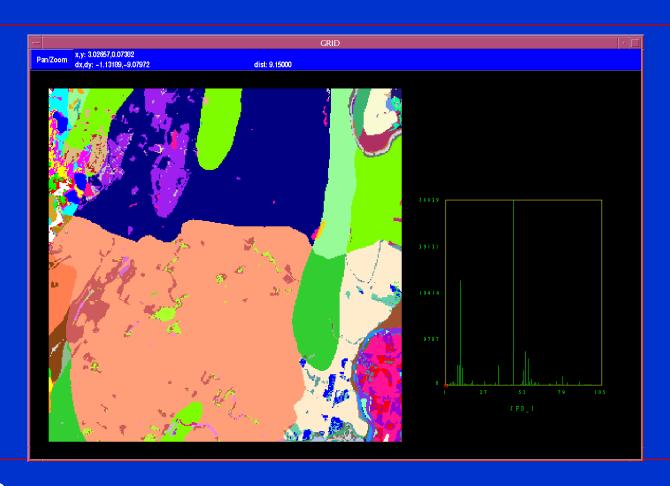

North Central Appalachia Rates of Land Cover Change

Cover	1973	1980	1986	1992
Water	1.6%	1.6%	1.6%	1.6%
Urban/Built-Up	0.7%	0.8%	0.9%	0.9%
Transitional	1.1%	1.2%	1.4%	1.2%
Mining/Quarries	0.4%	0.5%	0.5%	0.7%
Forests and Woods	91.5%	91.2%	91.1%	91.1%
Agriculture	3.9%	3.9%	3.7%	3.7%
Wetlands	0.7%	0.7%	0.7%	0.7%



1972-1992 Cumulative Land Cover Change


Overall, 4.14%
of the ecoregion
landscape changed
between 1972 and
1992.



Joint Frequency Distribution of STATSGO MUID, County Boundary, and Land Cover in 1973, 1979, 1987 and 1991 Sample Block 1 in Ecoregion 62

FY2000 Accomplishments

- Land Cover Change Assessment
 - Land cover change methods developed, tested
 - Interpretation of 4 ecoregions completed
- Carbon Dynamics Assessment
 - Graphic user interface is nearly completed
 - Methods for extracting STATSGO attributes, Joint Frequency Distribution (JFD) completed
 - CENTURY linkages to STATSGO, climate data and land cover data has been completed
 - Testing at Sample Block 1 in Ecoregion 62

FY 2001 Work Schedule – Land Cover Change Analysis

- Incorporate 2000 Landsat ETM+ data into analysis.
- Complete analysis of 20-30 ecoregions (emphasis on Eastern United States).
- Publish manuscripts on methodology and pilot phase results.

FY 2001 Work Schedule – Carbon Modeling

- Complete all the model-data linkages required for model simulation.
- Finish the development of the graphic user interface (GUI)
- Use the GUI to run model simulations over 10 to 20 ecoregions
- Publish results

Science Implications

- Objective understanding of the spatial and temporal dimensions of 1972-2000 conterminous U.S. LU/LC change.
- Identify local to regional carbon dynamics linkages.
- Demonstrate a framework for large-area land cover/carbon dynamics monitoring.

