
Landsat Time-series Derived 30-m Cropland Extent Product in Support of Food and Water Security

Dr. Prasad S. Thenkabai Research Geographer @ the U. S. Geological Survey (USGS)

April, 3-5, 2018 Presented @ the LCLUC Spring Science Team Meeting, 2018 Gaithersburg, Maryland, USA

Global Food Security-support Analysis Data @ 30 m (GFSAD30) Project PI, co-Is, and Project Team

PI and co-Is who wrote the proposal (original team that wrote the proposal): Dr. Prasad S. Thenkabail, PI, U.S. Geological Survey, Flagstaff, AZ; Dr. Cristina Milesi, co-I, California State University © Monterey bay\NASA Ames, CA; Dr. Mutlu Ozdogan, co-I, University of Wisconsin, Madison, WI; Dr. Russell G. Congalton, University of New Hampshire, Durham, NH; Dr. Chandra Giri, co-I, United States Environmental Protection Agency (USEPA); Dr. James C. Tilton, NASA Goddard Space Flight Center, Greenbelt, MD;

Funding: This research was funded by NASA MEaSUREs (Making Earth System Data Records for Use in Research Environments): 2013-2018. The United States Geological Survey (USGS) provided supplemental funding as well as numerous other direct and indirect support through its Land Change Science (LCS), Land Remote Sensing (LRS) programs, and Climate and Land Use Change Mission Area. The NASA MEaSUREs project grant number: NNH13AV82I, the USGS Sales Order number: 29039. Three Main Contributors to today's presentation:

Dr. Pardasaradhi Teluguntia, BAERI\USGS Scientist

Dr. Jun Xiong, BAERI\NASA AMES Scientist

Mr. Adam Oliphant, USGS Geographer

Complete team and their profiles @: https://geography.wr.usgs.gov/science/croplands/team.html www.croplands.org

Importance of Global Food and Water Security Thoughts for this Talk

"Civilization as it is known today could not have evolved, nor can it survive, without an adequate food supply"- Norman Borlaug, Father of the Green Revolution and Nobel Laureate To meet food and nutritional demand of 10+ billion people by the end of the century

'When the well is dry, we know the worth of water.' Benjamin Franklin, one of the Founding Father of the United States

GFSAD30 Project Goals and Objectives

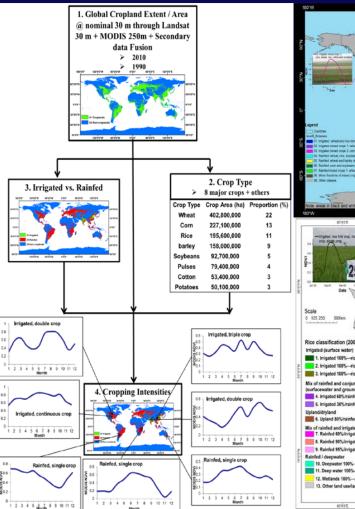
https://web.croplands.org/app/map croplands.org https://geography.wr.usgs.gov/science/croplands/index.htm

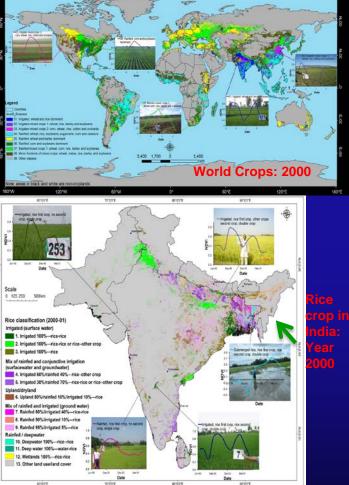
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Overarching Goal

Monitoring global croplands (GCs) is imperative for ensuring sustainable water and food security to the people of the world in the Twenty-first Century. However, the currently available cropland products suffer from major limitations such as: (1) Absence of precise spatial location of the cropped areas; (b) Coarse resolution nature of the map products with significant uncertainties in areas, locations, and detail; (b) Uncertainties in differentiating irrigated areas from rainfed areas; (c) Absence of crop types and cropping intensities; and (e) Absence of a dedicated web\data portal for the dissemination of cropland products.

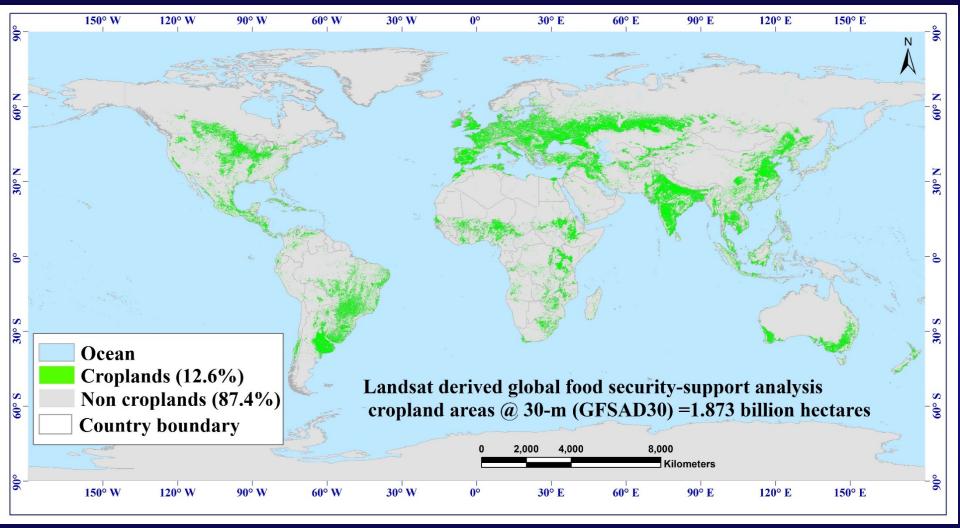
The overarching goal of this project is to produce consistent and unbiased estimates of global agricultural groupend areas, group types, group untering method, groupping intensities, & Crooland Fallows using Multi-sensor, Multi-date Remote Sensing and mature cropland mapping algorithms

Global Cropland Products @ 30-m Areas Accuracies


@ 30-m Global Cropland extent


- Cropland extent\areas; 1.

cropland products such as:


- Crop productivity (kg/m²)
- Grop water use (m³\m²):
- ("crop per drop"; kg\m³);

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies 30-m Cropland Extent Product of the World

Global Croplands @ 30-m Definition: How Croplands are defined and mapped

https://web.croplands.org/app/map croplands.org https://geography.wr.usgs.gov/science/croplands/index.html

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Understanding Cropland Extent Definitions: Net Cropland Extent Includes

Croplands +

ropland fallows +

Plantations

All croplands cultivated for food, feed, and fiber, including plantations (e.g., orchards, vineyards, coffee, tea, rubber) or croplands that are left fallow

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Understanding Cropland Extent Definitions: Agricultural Systems, Part of the Croplands

Aquaculture, fish ponds, often adjoin rice fields

Three areas of difficulty:

- 1. Aquaculture;
- 2. Green houses;
- 3. Managed pasture

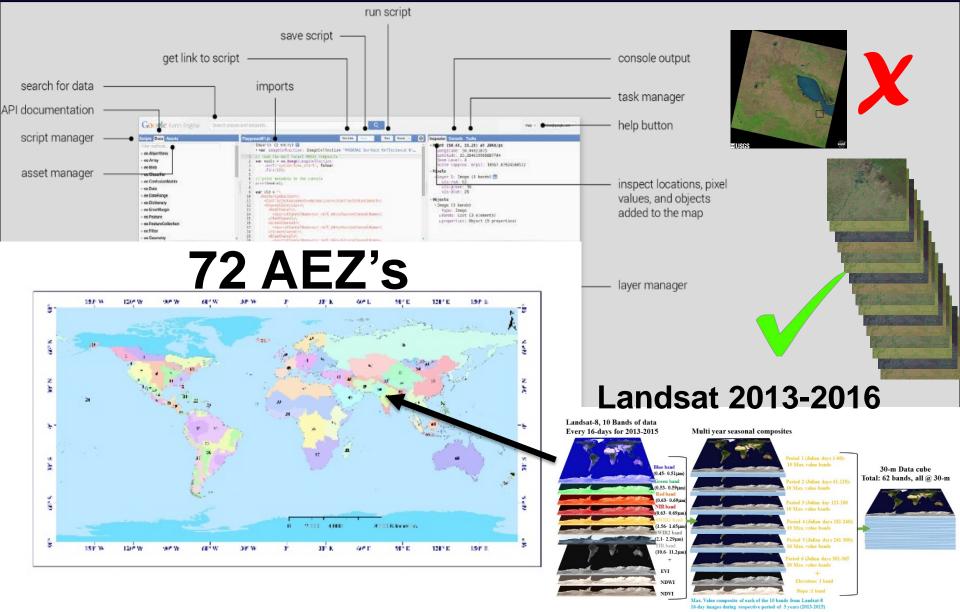
Managed Rangelands are large part of agricultural systems of many countries (e.g., Australia, New Zealand, Brazil, Argentina, and Kazakstan), we should map them, but keep them as a separate class NOT included in croplands

Rangelands, often adjoin croplands

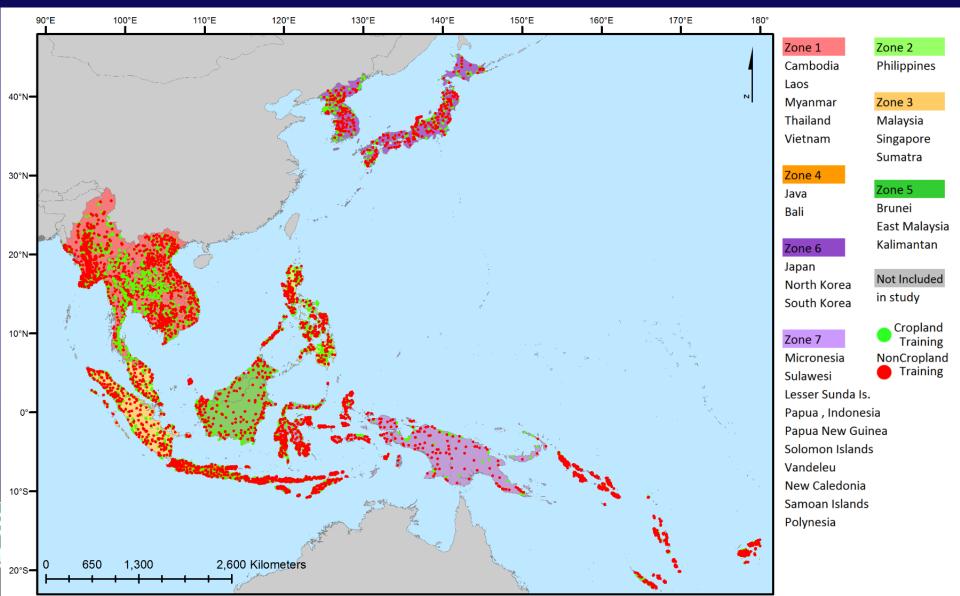
We should include aquaculture\fish ponds because they often adjoin rice fields and\or often part of heavily cultivated deltas and hence included in croplands

Global Croplands @ 30-m Methods: Machine Learning Algorithms (MLA's)

https://web.croplands.org/app/map croplands.org https://geography.wr.uags.gov/science/croplands/index.html


Cropland Mapping Algorithms (CMAs)

Machine Learning Algorithms (MLAs) in Global Cropland Mapping Pixel-based supervised machine learning algorithms (MLAs) along with Object-based hierarchical segmentation (HSEG) have been used extensively in generating global cropland products. In many cases we have also successfully in automated them to apply year after year with ability to: 1. hind-cast (e.g., past years), 2. now-cast (present year), and 3. future-cast (e.g., future years):

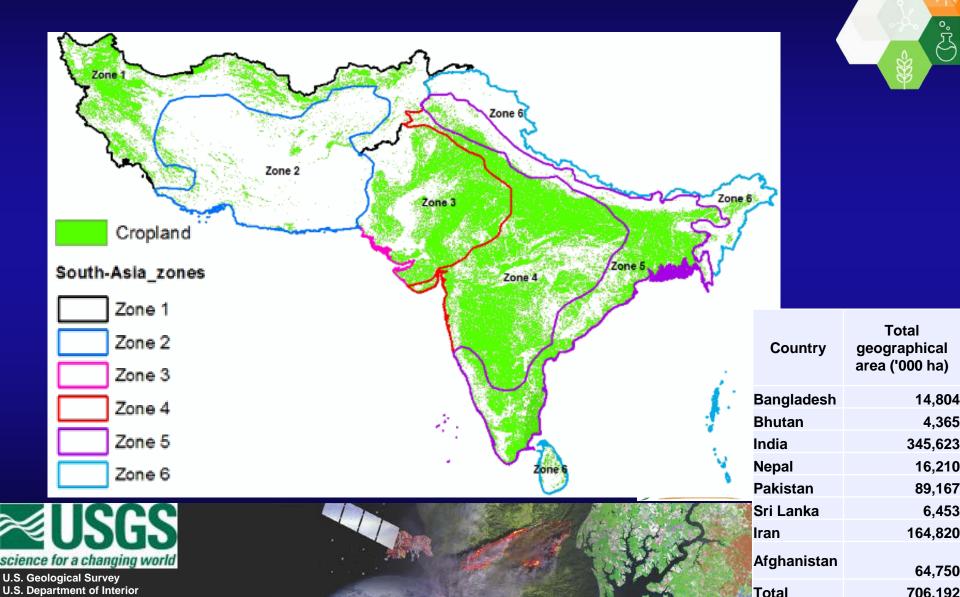

- A. Random forest algorithms (Tatsumi et al., 2015, Gislason et al., 2006);
- **B.** Support vector machines (Mountrakis et al., 2011);
- C. Automated cropland classification algorithms (Thenkabail et al., 2010, Teluguntla et al., 2017);
- D. Spectral matching techniques (Thenkabail et al., 2007, Teluguntla et al., 2017)
- E. Decision Tree algorithms (Friedl and Brodley, 1997, Defries et al., 1998, Waldner et al., 2015);
- F. Linear discriminant analysis (Imani and Ghassemian, 2015);
- G. Principal component analysis, change detection analysis (Jensen, 2000);
- H. kMeans, Isoclass clustering (Duveiller et al., 2015, Jensen et al., 2000);
- I. Classification and Regression Tree (CART) (Egotov et al., 2015, Deng and Wu, 2013);
- J. Tree-based regression algorithm (Ozdogan and Gutman, 2008);
- K. Phenology based methods (Dong et al., 2015);
- L. Fourier harmonic analysis (Zhang, 2015, Geerken et al., 2005);
- M. Hierarchical segmentation (HSEG; Tilton et al., 2011, 2015).

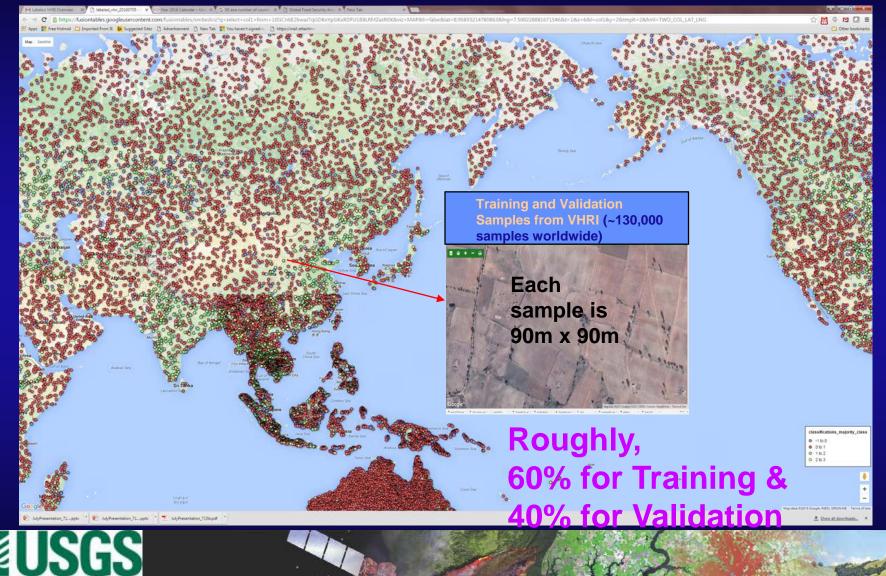
Accessing and Computing Massively Large Big Data (e.g., on GEE Cloud Computing) Normalized data, Code Sharing, Parallel Computing, Massively Big Data, Rapid Results

South East and North East Asia AEZs, Training Samples for Machine Learning Algorithms

South East and North East Asia

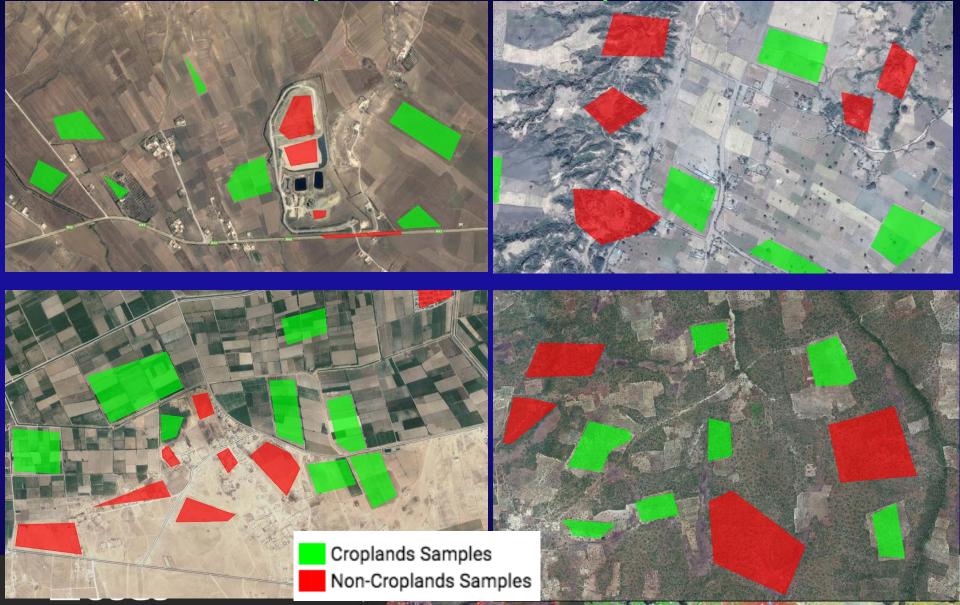
AEZs, Training Samples for Machine Learning Algorithms

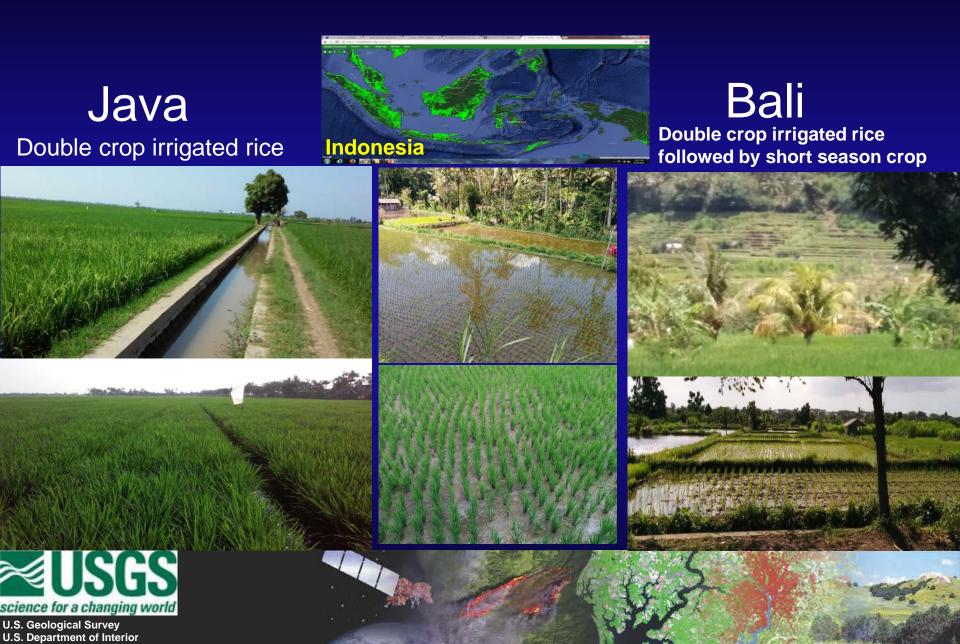

Zone	Region	Cropland Non Cropland Total Region Training Training Training Samples Samples Samples		Training	Land Area	Area per Sample
		#	#	#	km ²	km² / #
1	Mainland SE Asia	1,326	1,267	7 2,593	1,939,908	748
2	Philippines	350	330	680	300,000	441
3	Sumatra & Malaysia	305	317	622	604,071	971
4	Java & Bali	298	272	2 570	134,078	235
5	Kalimantan	257	349	9 606	743,329	1227
6	Japan & Korea	460	481	L 941	598,711	636
7	Pacific Island Nations	614	1,223	3 1,837	1,253,786	683
	Total	3,610	4,239	7,849	5,573,883	710
			Caller Strate 1	- Cart	ARC PARAMAGE	


U.S. Department of Interior

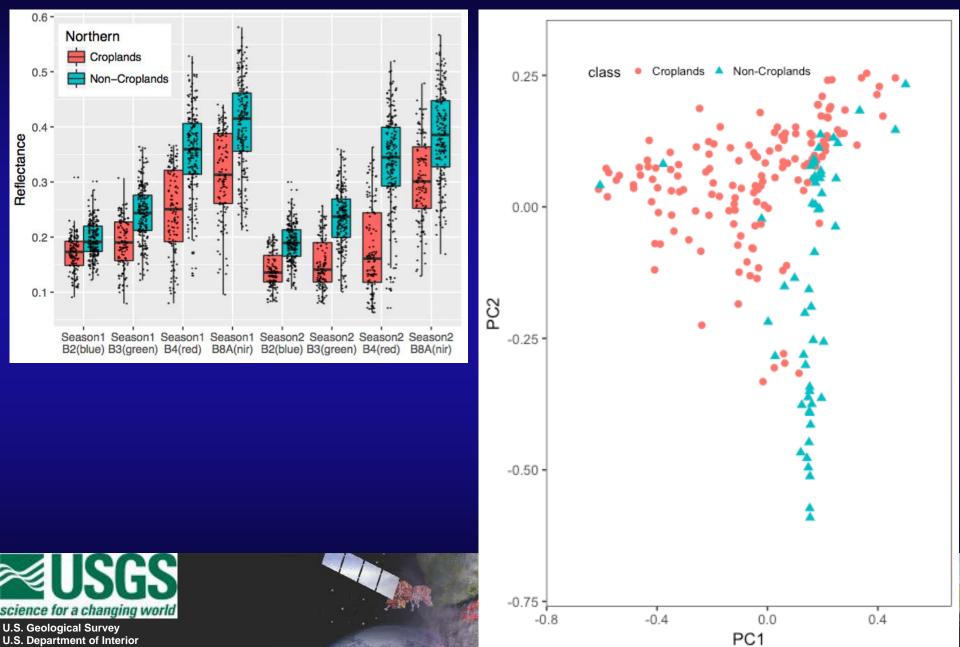
South Asia

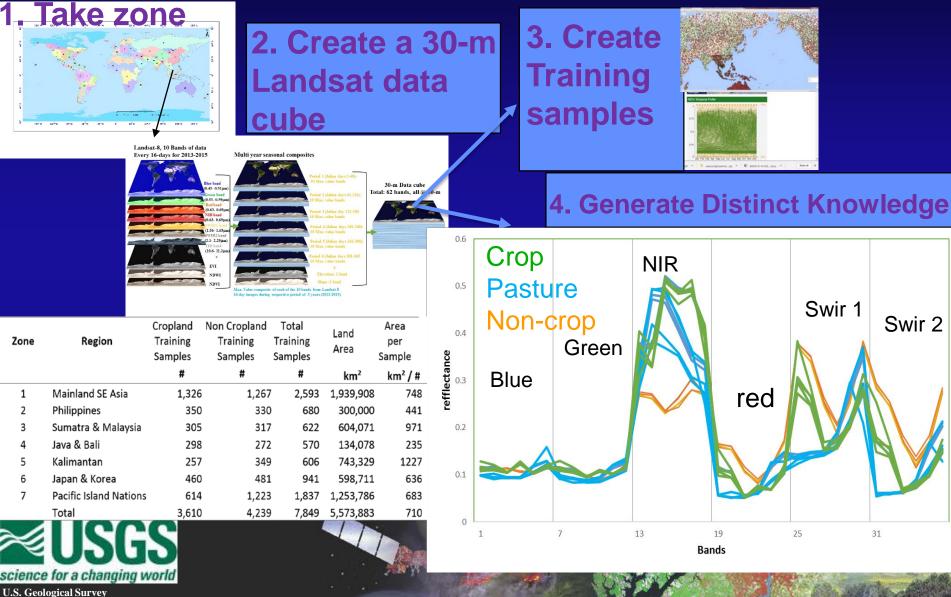
AEZs, Training Samples for Machine Learning Algorithms


Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies **Reference Data used for Training and Validation** ~120,000 sub-meter to 5-m Very High Resolution Data (VHRI) Locations

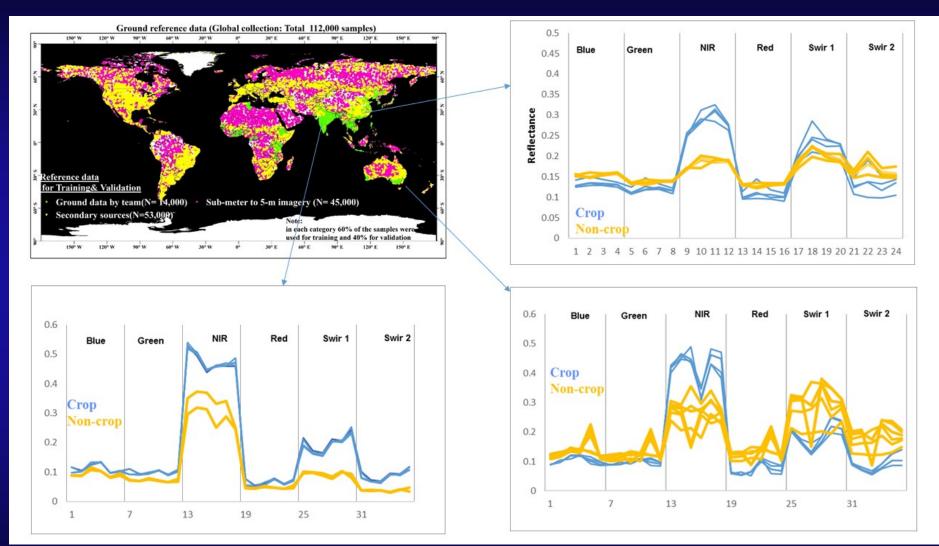

U.S. Geological Survey U.S. Department of Interior

science for a changing world


Reference Data for Training and Validation Croplands versus Non-croplands


Ground Data for Training, Class Identification, and Validation Recent (August, 2016) Field Data in Indonesia (Adam Oliphant & Prasad Thenkabail)

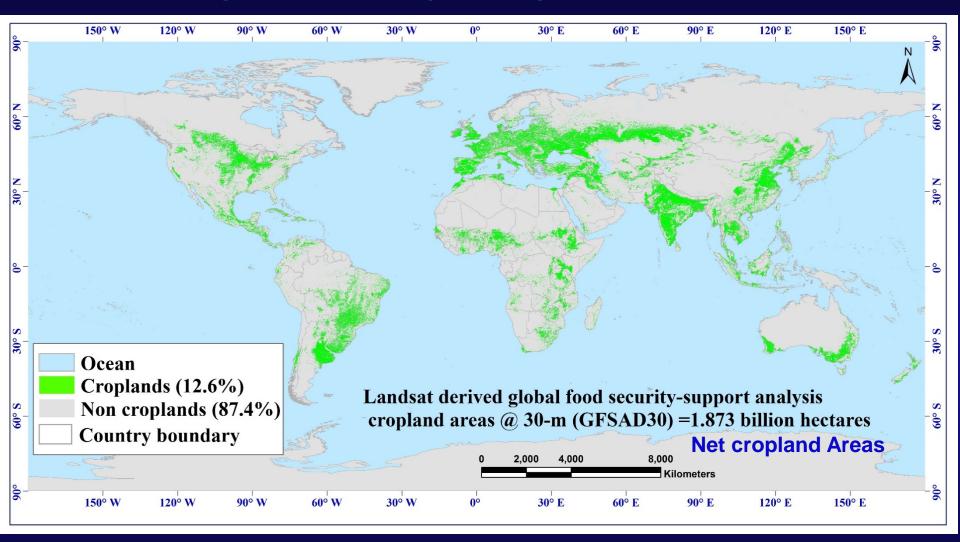
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Knowledge Generation for Machine Learning Algorithms: Some Examples



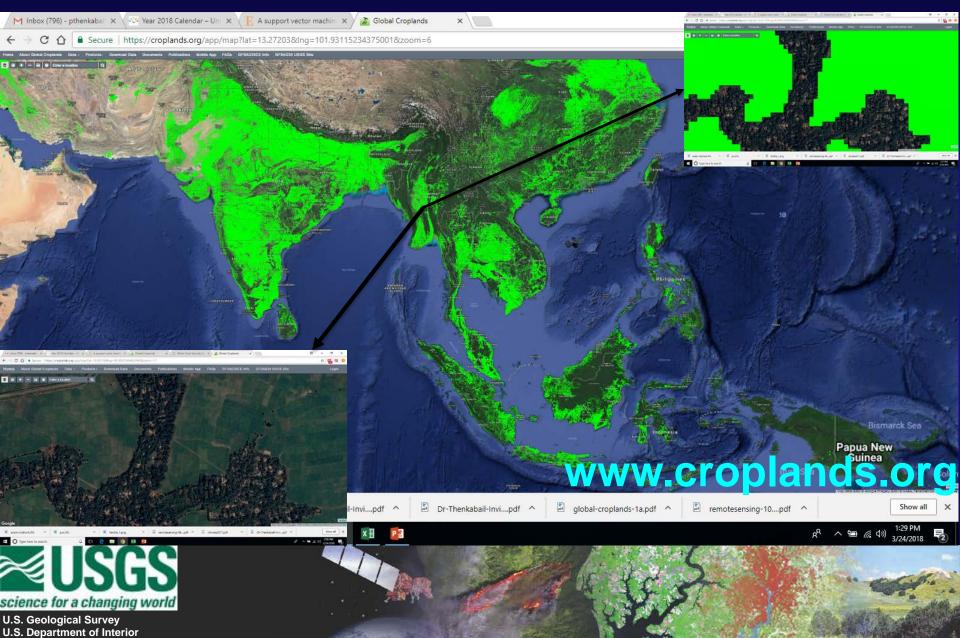
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Knowledge Generation for Random Forest Algorithm to Derive Croplands versus Non-croplands @ 30-m

U.S. Department of Interior

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Knowledge Generation for Machine Learning Algorithms: Some Examples


Global Croplands @ 30-m Results: 30-m Global Cropland Extent

https://web.croplands.org/app/map croplands.org https://geography.wr.usgs.gov/science/croplands/index.html



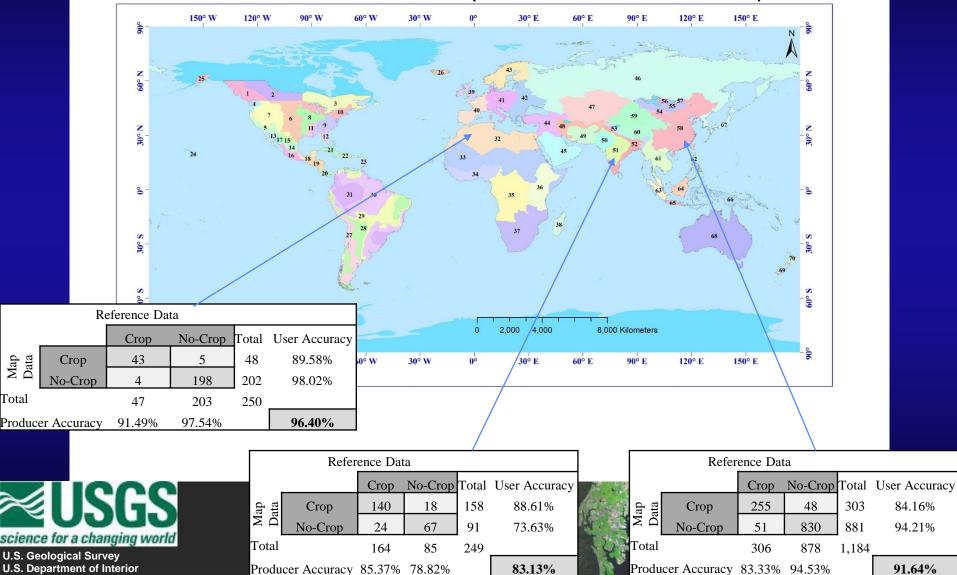
Landsat Satellite 16-day Time-Series Data for Deriving Global Croplands Global Cropland Extent (GCE30) Product, nominal 2015

Landsat Satellite 16-day Time-Series Data for Deriving Global Croplands GCE30 Product for South and South East Asia, nominal 2015

Landsat Satellite 16-day Time-Series Data for Deriving Global Croplands GCE30 Product for South and South East Asia, nominal 2015

Global Croplands @ 30-m Results: 30-m Global Cropland Extent Accuracies

https://web.croplands.org/app/map croplands.org https://geography.wr.usgs.gov/science/croplands/index.html


Global Cropland Extent @ 30-m (GCE30) Product Derived using Lndsat Data Validation of GCE30 Total Number of Samples: 19,171

Accuracy Error matrices: Zone-by-Zone Error Matrices

For the entire world, the global cropland extent product had an overall accuracy of 91.7%. For the cropland class, the producer's accuracy was 83.4% (errors of omission of 16.6%) and user's accuracies of 78.3% (errors of commissions of 21.7%).

GlobalCropland Extent @ 30-m Derived from Landsat Time-series Data Accuracies: SE Asia

Whole SE Asia

Total land area of all zones (TLAall): 546.83 Mha Cropland as % of TLAall: 23.4% total net cropland area of SE Asia = 128 Mha

Reference Data

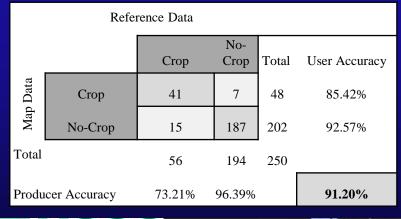
~ 90 6 40

		Сгор	No-Crop	Total	User Accuracy
Map Data	Сгор	376	114	490	76.73%
Map	No-Crop	85	1175	1260	93.25%
Total		461	1289	1750	
Producer Accuracy		81.56%	91.16%		88.63%

0 0 0 0 0 1

U.S. Geological Survey **U.S. Department of Interior**

O Type here to search


GlobalCropland Extent @ 30-m Derived from Landsat Time-series Data Accuracies for Zone 1 & 2 in SE Asia

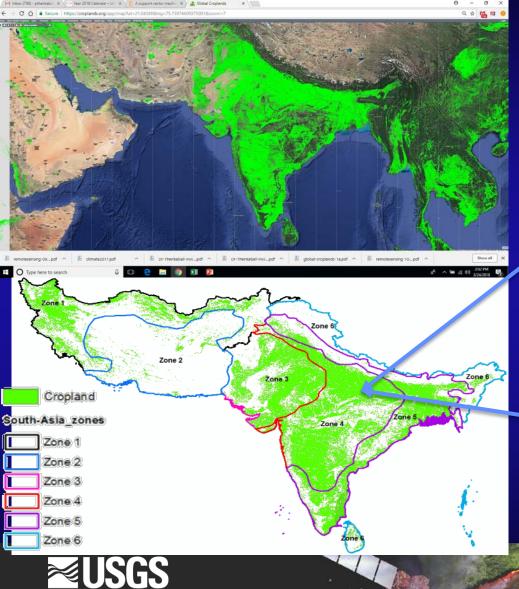
Myanmar, Thailand, Laos, Cambodia, & Vietnam

	Refe	_			
		Crop	No-Crop	Total	User Accuracy
Map Data	Crop	80	20	100	80.00%
Map	No-Crop	16	134	150	89.33%
Total		96	154	250	
Produ	icer Accuracy	83.33%	87.01%		85.60%

Defense as Date

Philippines

U.S. Geological Survey U.S. Department of Interior


	wn: 10	216 U	en we	07 -	NO:E	1997B	97:	1775	197		
47%-	2		2000 	- Aller	-	er			-	Zone 1 Cambodia Laos	Zone 2 Philippines
			2	3.2	100					Mysomar Thailand	Zone B Malaysia
2270-			3							Vietnam	Singapore Sumatra
			- An	a de la						Zone 4 Java	Zone 5
an-	、解	4. " M	Sand and State							Bali	Brumei East Malaysia
	Way	1.	19 - L 💡							Zone 6 Japan	Kalimantan
107 0-			- A							North Korea South Korea	Not Covered in study
		6.	1 and a start							Zone 7	Cropland
<i>o</i> -			2.30	1.800	24					Micronesia Sulawesi Lesser Sunda Is	Extent
			mante de	and the		23				Papua , Indone Papua New Gu	sia
17.5-			No and the second	and a second		and the	12			Solomon Island Vandeleu	
				ANT THE REAL	E.			N.		New Caledonia Samoan Island	
	c 850	1,300	2,600 Kilometer	5		1	10	1	÷.	Polynesia	
_			μ			93		2			

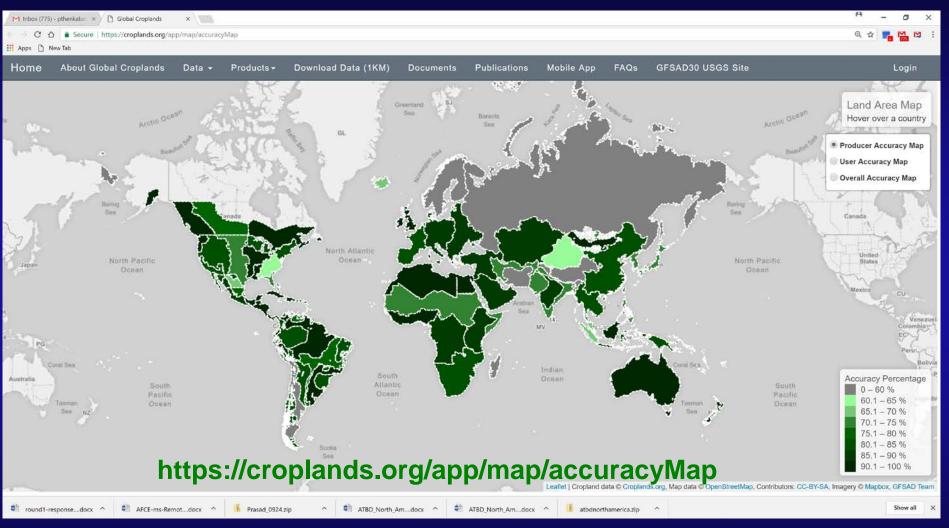
Total land area of Zone 1 (TLAZ1): : 192.3 Mha Cropland as % of TLAZ1 : 31.7% total net cropland area of SE Asia (TCASEA) = 128 Mha Cropland as % of TCASEA: 47.6%

Zone	Region	Cropland Training Samples #	Non Cropland Training Samples #	
1	Mainland SE Asia	1,326		
2	Philippines	350		

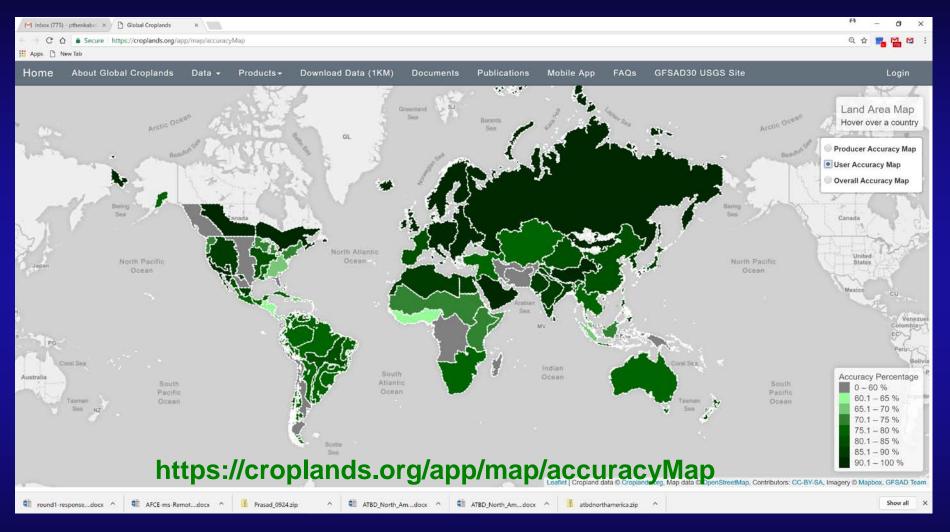
Total land area of Zone 2 (TLAZ2): 29.6 Mha Cropland as % of TLAZ2: 31.1% total net cropland area of SE Asia (TCASEA) = 128 Mha Cropland as % of TCASEA : 7.2%

GlobalCropland Extent @ 30-m Derived from Landsat Time-series Data Accuracies for Zone 4 : South Asia

Reference Data								
		Crop	No-Crop	Total	User Accuracy			
Map Data	Crop	140	18	158	88.61%			
D ⁸	No-Crop	24	67	91	73.63%			
Total		164	85	249				
Produ	cer Accuracy	85.37%	78.82%		83.13%			


Total land area of Zone 4 (TLAZ4): 174.87 Mha Cropland as % of TLAZ4: 57.49 % Total net cropland area of SAsia (TCASA) = 262.47 Mha Cropland as % of TCASA : 38.30 %

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Overall Accuracies of the Cropland Class

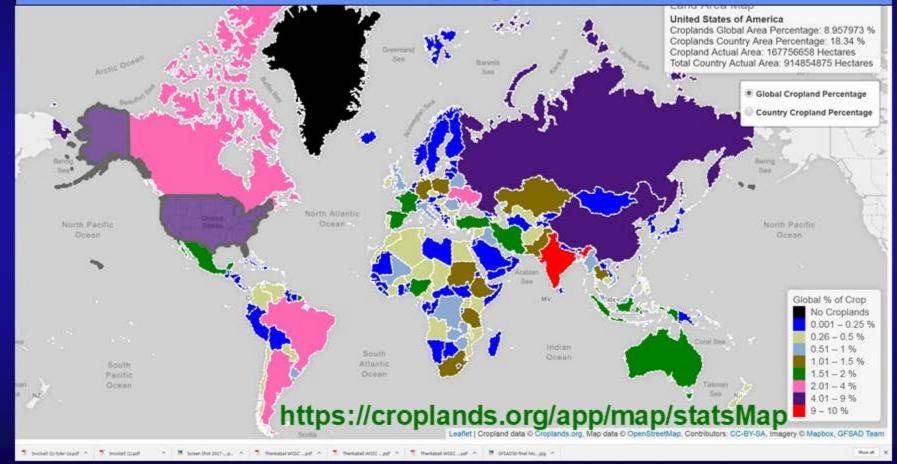


Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Producer's Accuracies of Cropland Class (measures errors of omissions)

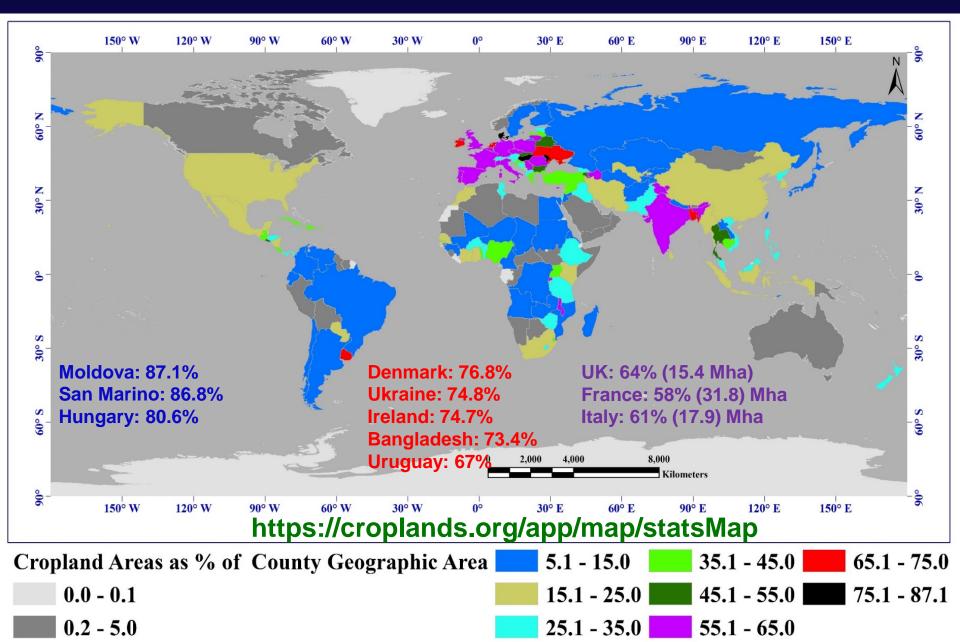
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies User's Accuracies of Cropland Class (measures errors of comissions)

Global Croplands @ 30-m Results: 30-m Global Cropland Extent Areas

https://web.croplands.org/app/map croplands.org https://geography.wr.usgs.gov/science/croplands/index.html

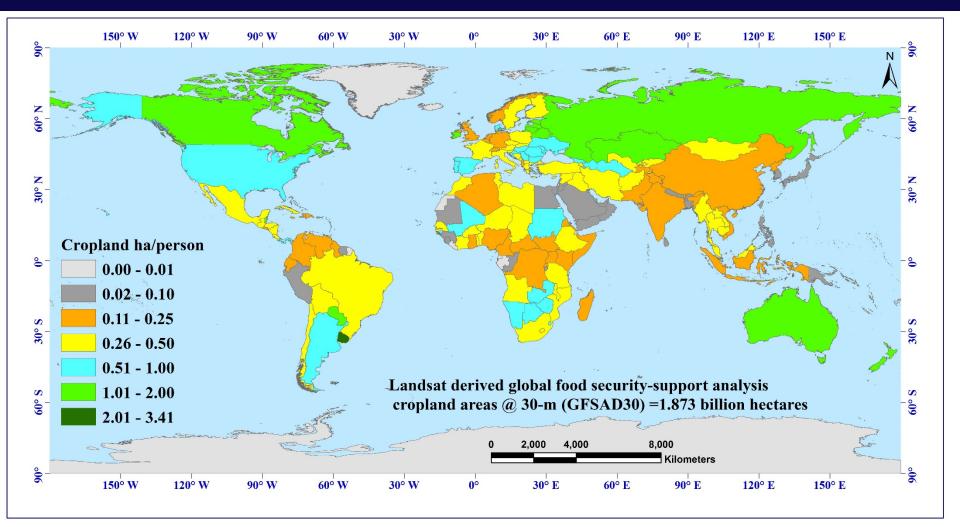


Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies 30-m Net Cropland Area as % of Global Net Cropland Area


Interactive area Map @:

https://web.croplands.org/app/map/statsMap

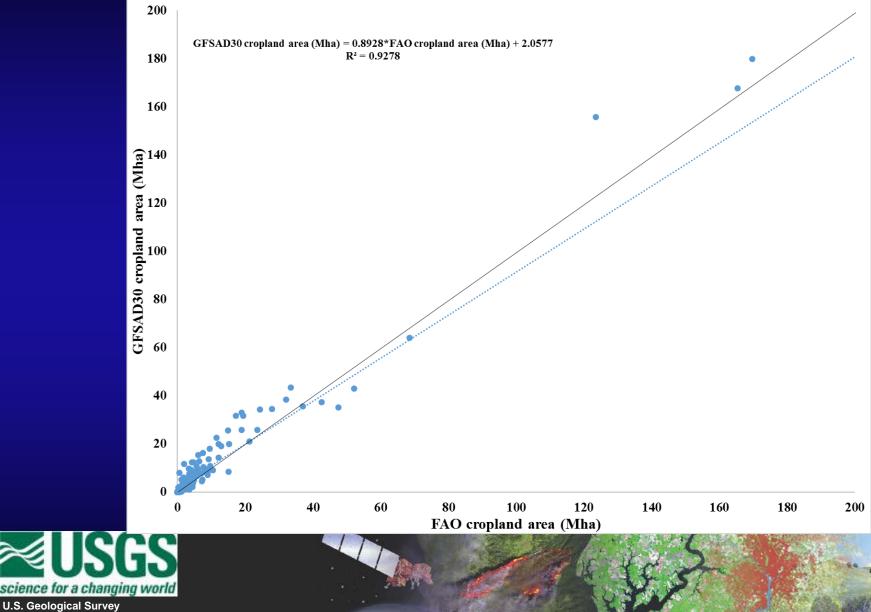
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies **30-m Net Cropland Area as % of Geographic Area of the Country**



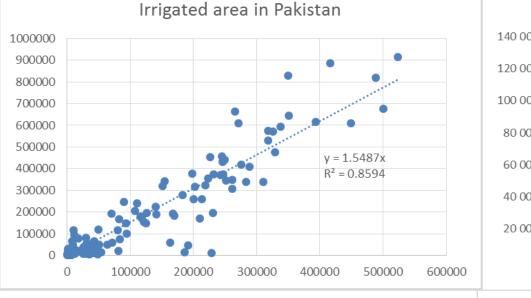
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Leading 4 Countries with 155-180 Mha of Net Cropland Areas

U.S. Department of Interior

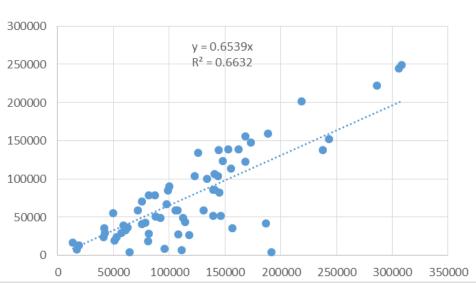
Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies 30-m Cropland Area as ha\per person per Country

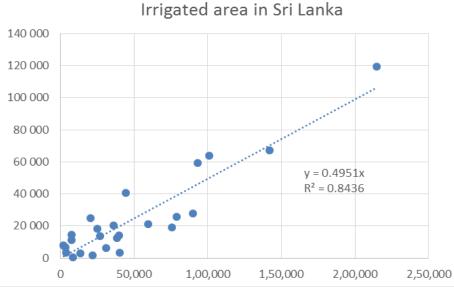


Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies 30-m Net Cropland Area as % of Geographic Area of the Country

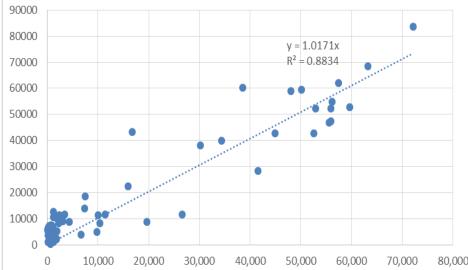

Table 3. Cropland areas derived from Landsat 30-m global cropland product compared with numerous other measure's

			• •	*				2
Rank Continent Name	Country Name	Gaul Admn Code ¹	Geographical Land Area	Crop Area				
			FAO ²	GFSAD30 ³	MIRCA2014 ⁴	FAO ⁵	GIAM- GMRCA ⁶	GRIPC2005 ⁷
				2015	2014	2010	2000	2005
				30-m	10km		1000m	500-m
# Name	Name	#	Ha	На	На	Ha	Ha	На
1 Asia	India	115	297,459,504	179,800,110	177,397,578	169,705,109	150,059,162	187,497,499
2 North America	USA	259	914,854,875	167,756,658	185,400,709	165,414,910	161,617,081	245,739,524
3 Asia	China	1E+05	932,824,512	165,228,334	158,872,013	248,526,732	203,624,473	203,607,871
4 Europe	Russia	204	1,633,037,879	155,799,806	127,482,904	123,516,453	128,675,415	235,890,480
5 South America	Brazil	37	845,047,923	63,994,709	58,705,445	68,505,500	91,603,674	102,616,440
6 Europe	Ukraine	254	57,971,910	43,375,936	34,483,060	33,392,284	31,285,731	50,085,213
7 North America	Canada	46	913,513,514	42,980,283	42,379,112	52,119,600	37,602,699	68,061,608
8 South America	Argentina	12	273,879,142	38,383,784	34,778,946	32,034,000	43,623,158	55,168,208
9 Asia	Indonesia	116	181,081,081	37,441,996	31,533,604	42,612,000	20,746,487	31,031,12
10 Africa	Nigeria	182	91,075,795	35,665,573	38,620,000	37,026,500	9,770,698	39,298,447
11 Australia & Oceanian	Australia	17	768,851,504	35,105,792	30,615,114	47,447,364	48,623,546	54,933,291
12 North America	Mexico	162	194,391,304	34,516,526	37,674,312	27,867,743	16,352,595	26,860,401
13 Europe	Turkey	249	76,899,209	34,314,153	23,230,840	24,280,464	12,356,748	20,189,904
14 Asia	Iran	117	162,802,013	33,063,882	16,644,983	18,969,365	8,133,031	7,358,862
15 Europe	France	85	54,805,243	31,795,512	19,627,780	19,403,358	20,048,339	40,252,787
16 Europe	Spain	229	49,873,874	31,786,945	18,748,612	17,216,960	18,813,770	20,624,71
17 Asia	Kazakhstan	132	270,051,813	25,885,023	23,102,226	23,558,240	38,950,704	36,389,615
18 Asia	Thailand	240	51,149,871	25,756,201	17,701,953	19,003,200	16,542,332	27,363,222
19 Africa	Ethiopia	79	99,957,143	25,702,434		14,973,580	10,748,582	
20 Africa	Sudan	6	188,606,800	22,740,632	18,400,000		9,553,181	


Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Area Comparisons of Countries: GFSAD30 Vs. FAO (2015)



Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies Area Comparisons of Countries: GFSAD30 Vs. FAO (2015)



Irrigated area in Bangladesh

Irrigated area in Nepal

Global Croplands @ 30-m Dissemination

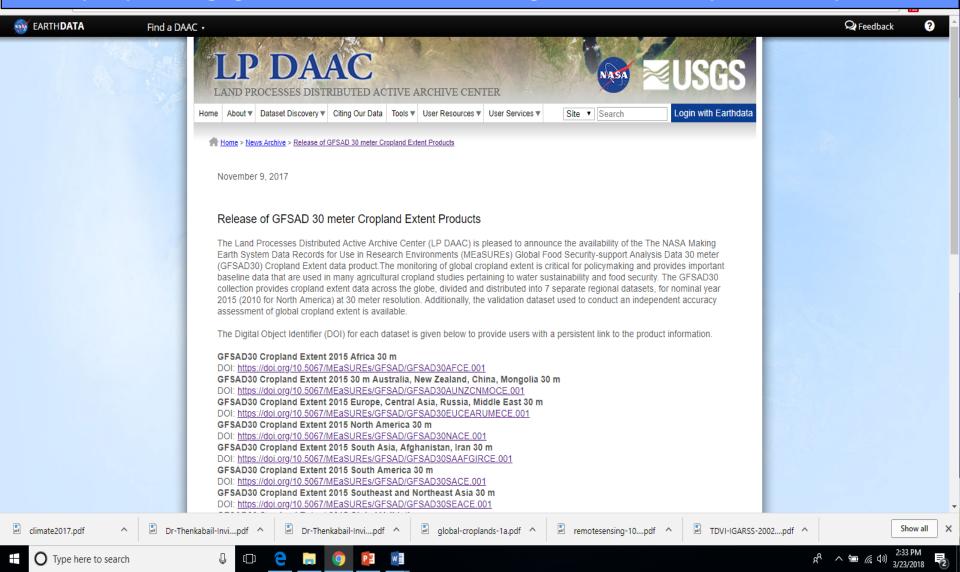
https://web.croplands.org/app/map croplands.org https://geography.wr.usgs.gov/science/croplands/index.html

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies DATA Access\Dissemination through LP DAAC Data, Products, ATBD's, User Guide's, Manuscripts

Data Download:

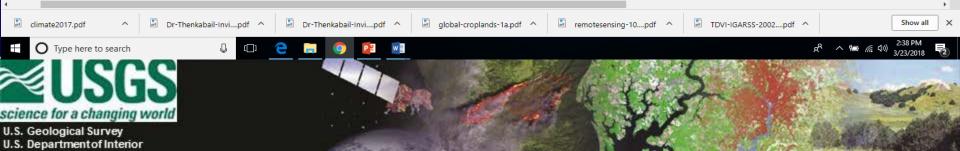
https://lpdaac.usgs.gov/about/news_archive/release_gfsad_30_met er_cropland_extent_products

Data Browse: www.croplands.org You can find (from these sites): 1. products, 2. algorithms, and 3. manuscripts


Project Sites: www.croplands.org https://geography.wr.usgs.gov/science/croplands/index.html globalcroplands.org

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies DATA Access\Dissemination through LP DAAC Data, Products, ATBD's, User Guide's, Manuscripts

https://lpdaac.usgs.gov/about/news_archive/release_gfsad_30_meter_cropland_extent_products



Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies

DATA Access\Dissemination through LP DAAC Data, Products, ATBD's, User Guide's, Manuscripts

https://lpdaac.usgs.gov/about/news_archive/release_gfsad_30_meter_cropland_extent_products

GFSAD30 Cropland Extent 2015 Africa 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AFCE.001 GFSAD30 Cropland Extent 2015 30 m Australia, New Zealand, China, Mongolia 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30AUNZCNMOCE.001 GFSAD30 Cropland Extent 2015 Europe, Central Asia, Russia, Middle East 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30EUCEARUMECE.001 GFSAD30 Cropland Extent 2015 North America 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30NACE.001 GFSAD30 Cropland Extent 2015 South Asia, Afghanistan, Iran 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30SAAFGIRCE.001 GFSAD30 Cropland Extent 2015 South America 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30SACE.001 GFSAD30 Cropland Extent 2015 Southeast and Northeast Asia 30 m DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30SEACE.001 **GFSAD30 Cropland Extent 2015 Global Validation** DOI: https://doi.org/10.5067/MEaSUREs/GFSAD/GFSAD30VAL.001

Global 30-m Landsat-derived Cropland Extent, Areas, and Accuracies

DATA Access\Dissemination Peer-reviewed Manuscripts

https://geography.wr.usgs.gov/science/croplands/pubs2017.html

Xiong, J., Thenkabail, P.S., Tilton, J.C., Gumma, M.K., Teluguntla, P., Oliphant, A., Congalton, R.G., Yadav, K., Gorelick. N. 2017. Nominal 30-m Cropland Extent Map of Continental Africa by Integrating Pixel-Based and Object-Based Algorithms Using Sentinel-2 and Landsat-8 Data on Google Earth Engine, Remote Sensing, 2017, 9(10), 1065; doi:10.3390/rs9101065, <u>http://www.mdpi.com/2072-4292/9/10/1065</u>

Teluguntla, P., Thenkabail, P.S., Xiong, J., Gumma, M.K., Congalton, R.G., Oliphant, A., Poehnelt, J., Yadav, K., Rao, M., and Massey, R. 2017. Spectral matching techniques (SMTs) and automated cropland classification algorithms (ACCAs) for mapping croplands of Australia using MODIS 250-m time-series (2000–2015) data, International Journal of Digital Earth, DOI: 10.1080/17538947.2016.1267269. IP-074181, http://dx.doi.org/10.1080/17538947.2016.1267269

Xiong, J., Thenkabail, P.S., Gumma, M.K., Teluguntla, P., Poehnelt, J., Congalton, R.G., Yadav, K. and Thau, D., 2017. Automated cropland mapping of continental Africa using Google Earth Engine cloud computing. ISPRS Journal of Photogrammetry and Remote Sensing, 126, pp.225-244, <u>http://www.sciencedirect.com/science/article/pii/S0924271616301575</u>

Massey, R., Sankey, T.T., Congalton, R.G., Yadav, K., Thenkabail, P.S., Ozdogan, M., Sánchez Meador, A.J. 2017. MODIS phenology-derived, multi-year distribution of conterminous U.S. crop types, Remote Sensing of Environment, Volume 198, 1 September 2017, Pages 490-503, ISSN 0034-4257, https://doi.org/10.1016/j.rse.2017.06.033

