Industrial forest mapping: a Landsat Spatial and Temporal Approach

Luigi Boschetti, Lian-Zhi Huo, Nuria Sanchez

Department of Natural Resources and Society, University of Idaho, Moscow, ID (USA)

Andrew Hudak

Rocky Mountain Research Station, US Forest Service, Moscow, ID USA)

Robert Keefe, Alistair Smith

Department of Forest, Rangeland and Fire Sciences, University of Idaho, Moscow, ID (USA)

Collaborators:

David Roy (SDSU, USA)

Alberto Setzer (INPE, Brazil)

Mastura Mahmud (Universiti Kebangsaan, Malaysia)

Nicola Clerici (Universidad del Rosario, Colombia)

Objective of the project

- Prototype a method for monitoring and mapping globally industrial forests, using Landsat data
- Industrial forest = forest with productive use:
 - Plantations
 - Semi-natural forests
- Study Area:
 - Wall-to-wall CONUS
 - test sites in tropics
- Tests of combined used of Landsat and LIDAR

Large RS heritage on forest

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

Large RS heritage on forest monitoring

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

University of Idaho
College of Natural Resources

Hansen et al 2014

Gross Forest Cover Loss # Deforestation

Kurtz, 2010

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

Mapping Forest Land Cover ≠ Land Use

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

Mapping Forest Land Cover ≠ Land Use

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

Current project activities

- 1. Detecting Landsat-era forest management activity: 2003-2011 forest clearcuts in the CONUS
- 2. Detecting pre-Landsat forest management activities combining Lidar and Landsat data: test cases in the Pacific Northwest

Large RS heritage on forest monitoring

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

University of Idaho
College of Natural Resources

Hansen et al 2014

Disturbance type characterization in the CONUS

1 – Segmentation

Forest cover loss map

Forest cover loss *objects*: 8-neighbourhood connectivity Same forest cover loss year

Temporal analysis

Object-oriented version of the LandTrendr Algorithm (Kennedy et al, 2010)

- Time series of spectral indices for each object, extracted from the WELD annual composites
 - RGI, NDVI, NDMI, B54R, NBR, ρ_{B5}, TC_{BRI}, TC_{GRE}, TC_{WET}
- Temporal segmentation of the trajectory
- Classification based on the trajectory characteristics

FIRE

9.0

4

0.2

4.0

0.2

NBR

Ö

4.

0.2

-0.04

-0.06

-0.08

TCGRE

0.2

0.2

0.6

4.0

0.2

NDV

NDM NDM

4.

0.2

4.0

Temporal Trajectory Segmentation

Representative parameters:

- Minimum and maximum slope
- Average value in the 2 years before and 2 years after the disturbance
- Magnitude of the change between the two average values

Random forest classification: training data

Training set of ~ 2000 forest cover loss objects of known disturbance types

Visual interpretation of:

- WELD composites
- USDA NAIP aerial photos
- high resolution satellites imagery
- ancillary datasets (MTBS perimeters and USFS insect outbreak locations)

Clearcuts
Fires
Insect outbreaks

Post classification with MODIS active fires

Post classification with MODIS active fires

2004-2011 forest disturbances

2004-2011 Clearcuts

Clearcut trends

Forest Ownership: Public

Forest Ownership: Public and Private

2004-2011 Insect Damage

FedPublic
StatePublic
LocalPublic
FamilyPrivate
CorpPriv
OtherPriv

A Landsat
Spatial and Temporal
Approach

What is the logging rate? Is it sustainable?

	Northwest	Northeast	Midwest	Southeast
Forest type	Dry and moist conifer	Spruce	Northern & central hardwoods	Southern pine
Rotation - Sawlogs	50-60 yr	60-80 ут	80-100 yr	25 yr
Rotation -Pulp	20 уг	20 yr	-	12-15 ут
General silvicultural practices	Thin at age 12-14, possible thin 10 yrs before harvest	Thin at age 12-14, possible thin 10 - 15 yrs before harvest	Multiple thinnings, first at age 20-25	Row crop plantation; intensive fertilization and thinning
Final harvest regeneration system	Clearcut	Partial harvest	Clearcut	Cleareut
Maximum clearcut size – State law	California: 8.1 ha Oregon: 48.6 ha Washington: 97.1 ha Idaho: 40.5 ha on state lands; otherwise, no limit	Maine: 97.1 ha with restrictions; New Hampshire, Vermont, New York: No limit	No limit	No limit

What's next

- Refinement of the methodology
- Validation and uncertainty assessment (spatial and temporal)
- Is forest harvest in CONUS sustainable?
 - Clearcut rate by region and forest type
 - Comparison with rotation times

Current project activities

- 1. Detecting Landsat-era forest management activity: 2003-2011 forest clearcuts in the CONUS
- 2. Detecting pre-Landsat forest management activities combining Lidar and Landsat data: test cases in the Pacific Northwest

Mapping the extent of the industrial forest

- Well defined for plantations, where it can be solved as a classic RS problem (tree specie mapping)
- Weakly defined for semi-natural plantations, where the vegetation composition is the same as natural vegetation. Remote sensing alone is not sufficient:
 - Ownership and protection status
 - Logging history shapes forest characteristics
 - Shape of homogeneous plots
 - Stand age

Tropical Plantations

Brazil: eucalyptus

Tropical Plantations

Malaysia: Oil Palm and Rubber

A Landsat Spatial and Temporal **Approach**

University of Idaho College of Natural Resources

Characteristics of industrial clearcuts

 Logging practices are dictated by forest type, forest productivity, economic considerations, constraints due to regulations

	Northwest	Northeast	Midwest	Southeast
Forest type	Dry and moist conifer	Spruce	Northern & central hardwoods	Southern pine
Rotation - Sawlogs	50-60 yr	60-80 ут	80-100 yr	25 yr
Rotation -Pulp	20 ут	20 yr	-	12-15 ут
General silvicultural practices	Thin at age 12-14, possible thin 10 yrs before harvest	Thin at age 12-14, possible thin 10 - 15 yrs before harvest	Multiple thinnings, first at age 20-25	Row crop plantation; intensive fertilization and thinning
Final harvest regeneration system	Clearcut	Partial harvest	Clearcut	Cleareut
Maximum clearcut size – State law	California: 8.1 ha Oregon: 48.6 ha Washington: 97.1 ha Idaho: 40.5 ha on state lands; otherwise, no limit	Maine: 97.1 ha with restrictions; New Hampshire, Vermont, New York: No limit	No limit	No limit

Distinctive Patterns: California

Distinctive Patterns: Maine

Distinctive Patterns: Oregon

From Landsat...

Clearwater NF (Idaho)

From Landsat...

Clearwater NF (Idaho)

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

University of Idaho
College of Natural Resources

From Landsat...

Clearwater NF (Idaho)

Industrial Forest Mapping
A Landsat
Spatial and Temporal
Approach

University of Idaho
College of Natural Resources

Deforestation or forest management? Object-oriented classification

- Use of ancillary information about forestry practices
- Classification based on
 - Size
 - Shape (compactness, linear or curvilinear edges)
 - Contextual information
 - Presence or absence of logging in previous years
- LIDAR Landsat data fusion

Detecting past clearcuts: LIDAR-L8 fusion

LiDAR classification: Disturbed/indisturbed

Spatial and Temporal
Approach

MeanDecreaseGini
UNIVERSITY of Idano
College of Natural Resources

LiDAR analysis: time since disturbance

Median metric values ROIS

Median metric values ROIS

What's next?

- LiDAR analysis:
 - Other disturbacnes (fire)
 - Data collection
 - Additional sites
- LiDAR Landsat data fusion
 - Analysis of shapes and patterns from the 2004-2011 clearcuts
 - Potential for object oriented classification combining LiDAR metrics and vegetation indices
 - Waiting for L8 WELD

Comments, suggestions and criticism are extremely welcome!

Bonus slide: fire

