Operational Multi-Source Imaging of Land Surface Phenology

Douglas Bolton¹, Mark Friedl¹, Eli Melaas¹, Joshua Gray², Lars Eklundh³

¹Earth & Environment, Boston University

LCLUC

²Center for Geospatial Analytics, North Carolina State University ³Lund University, Sweden BOSTON UNIVERSITY NC STATE UNIVERSITY

Land Surface Phenology

- Indicator of how climate change is impacting terrestrial ecosystems
- Driver of carbon uptake by vegetation
- Provides information on land use
 - Natural vs managed systems
 - Crop type discrimination

/ Land-Use Change Program

image credit: Bill Hargrove (ForWarn)

BOSTON

UNIVERSITY

NC STATE

Remote Sensing of Phenology

MODIS

Landsat

Phenology at coarse resolution (500m)

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

UNIVERSITY

BOSTON

Harmonized Landsat Sentinel (HLS)

UNIVERSITY

ver / Land-Use Change Program

- Fit smoothing splines on an annual basis
- Detect time-series peaks
- Determine greenup and greendown periods by identifying time-series troughs
- Identify phenology dates during greenup and greendown

Time-series of the Enhanced Vegetation Index 2 (EVI2)

BOSTON

UNIVERSITY

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

- Fit smoothing splines on an annual basis
- Detect time-series peaks
- Determine greenup and greendown periods by identifying time-series troughs
- Identify phenology dates during greenup and greendown

Time-series of the Enhanced Vegetation Index 2 (EVI2)

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

UNIVERSITY

BOSTON

- Fit smoothing splines on an annual basis
- Detect time-series peaks
- Determine greenup and greendown periods by identifying time-series troughs
- Identify phenology dates during greenup and greendown

Time-series of the Enhanced Vegetation Index 2 (EVI2)

BOSTON

UNIVERSITY

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

- Fit smoothing splines on an annual basis
- Detect time-series peaks
- Determine greenup and greendown periods by identifying time-series troughs
- Identify phenology dates during greenup and greendown

Time-series of the Enhanced Vegetation Index 2 (EVI2)

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

UNIVERSITY

BOSTON

- Fit smoothing splines on an annual basis
- Detect time-series peaks
- Determine greenup and greendown periods by identifying time-series troughs
- Identify phenology dates during greenup and greendown

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

UNIVERSITY

BOSTON

Distributed via LP-DAAC

Phenological Timing Metrics					
Onset Greenness Increase (OGI)	Date, number of days from Reference Date				
50 Percent Greenness Increase (50PCGI)	Date, number of days from Reference Date				
Onset Greenness Maximum (OGMx)	Date, number of days from Reference Date				
Onset Greenness Decrease (OGD)	Date, number of days from Reference Date				
50 Percent Greenness Decrease (50PCGD)	Date, number of days from Reference Date				
Onset Greenness Minimum (OGMn)	Date, number of days from Reference Date				
Integrated Greenness	Sum of daily EVI during growing season				
HLS Reflectance Metrics					
HLS Reflectance on OGI Date	Bands 1-6 HLS surface reflectance on OGI date				
HLS Reflectance on 50PCGI Date	Bands 1-6 HLS surface reflectance on 50PCGI date				
HLS Reflectance on OGMx Date	Bands 1-6 HLS surface reflectance on OGMx date				
HLS Reflectance on OGD Date	Bands 1-6 HLS surface reflectance on OGD date				
HLS Reflectance on 50PCGD Date	Bands 1-6 HLS surface reflectance on 50PCGD date				
HLS Reflectance on OGMn Date	Bands 1-6 HLS surface reflectance on OGMn date				
LSP Mean and Anomaly Metrics					
Long Term Weekly Mean EVI	Average EVI across available years, at 7-day time steps; Available in 2019.				
Weekly EVI Anomaly	In-season anomaly in EVI, relative to long-term mean, at 7- day time steps; Available in 2019.				
Cumulative EVI Growing Season Anomaly	Sum of anomalies in daily interpolated EVI versus long-term mean at each pixel; Available in 2019.				

BOSTON

UNIVERSITY

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

Hubbard Brook, NH

Preprocessing steps

- Running Fmask 4.0 on Sentinel images
- Performing topographic correction (Tan et al. 2013 Rotational Correction)
- Additional snow screening using the normalized difference moisture index (NDMI) (Based on Wang et al. 2015)
- Time-series gap filling
 - Fill snow observations with dormant value
 - 5th percentile of EVI2 from 2016-2018
 - Spline weight of 0.5
 - Gap fill with observations from "similar" years
 - Spline weight determined by similarity between years
 - Max spline weight of 0.1

Preprocessing steps – Running Fmask 4.0

- High observation density is critical for phenology
- For some Sentinel images, HLS over predicts clouds and shadows

Shadow Cloud Snow

LCLUC Land-Cover / Land-Use Change Program

Preprocessing steps – Running Fmask 4.0

Compared HLS QA against Fmask 4.0 for 176 test tiles

% of clear observations lower for HLS QA than Fmask 4.0

Running Fmask 4.0 for Sentinel images only

UNIVERSITY

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

Preprocessing steps

- Running Fmask 4.0 on Sentinel images
- **Performing topographic correction** (Tan et al. 2013 Rotational Correction)
- Additional snow screening using the normalized difference moisture index (NDMI) (Based on Wang et al. 2015)
- Time-series gap filling
 - Fill snow observations with dormant value
 - 5th percentile of EVI2 from 2016-2018
 - Spline weight of 0.5
 - Gap fill with observations from "similar" years
 - Spline weight determined by similarity between years
 - Max spline weight of 0.1

Preprocessing steps – Topographic Correction

Tan et al. 2013 – Rotational Correction

Preprocessing steps – Topographic Correction

Tan et al. 2013 – Rotational Correction

Preprocessing steps – Topographic Correction

North facing deciduous forest

pixel

More realistic EVI2 amplitude
after correction

One week shift in 50% amplitude dates

LCLUC Land-Cover / Land-Use Change Program

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

18

NC STATE

UNIVERSITY

BOSTON

Preprocessing steps

- Running Fmask 4.0 on Sentinel images
- Performing topographic correction (Tan et al. 2013 Rotational Correction)
- Additional snow screening using the normalized difference moisture index (NDMI) (Based on Wang et al. 2015)
- Time-series gap filling
 - Fill snow observations with dormant value
 - 5th percentile of EVI2 from 2016-2018
 - Spline weight of 0.5
 - Gap fill with observations from "similar" years
 - Spline weight determined by similarity between years
 - Max spline weight of 0.1

NC STATE

BOSTON

Preprocessing steps – Snow under canopies

- False EVI2 peaks in winter due to snow under evergreen canopies
- Mask observations when NDMI > 0.5 (Wang et al. 2015)

Cover / Land-Use Change Program

Only applied when snow detected within 5km of pixel!

BOSTON

UNIVERSITY

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

Preprocessing steps – Snow under canopies

- False EVI2 peaks in winter due to snow under evergreen canopies
- Mask observations when NDMI > 0.5 (Wang et al. 2015)

ver / Land-Use Change Program

Only applied when snow detected within 5km of pixel!

BOSTON

UNIVERSITY

Preprocessing steps

- Running Fmask 4.0 on Sentinel images
- Performing topographic correction (Tan et al. 2013 Rotational Correction)
- Additional snow screening using the normalized difference moisture index (NDMI) (Based on Wang et al. 2015)
- Time-series gap filling
 - Fill snow observations with dormant value
 - 5th percentile of EVI2 from 2016-2018
 - Spline weight of 0.5
 - Gap fill with observations from "similar" years
 - Spline weight determined by similarity between years
 - Max spline weight of 0.1

Preprocessing steps – Gap filling

Land-Cover / Land-Use Change Program

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

Preprocessing steps – Gap filling

Land-Cover / Land-Use Change Program

MS-LSP Product Status

- Produced full scale results for eastern United States
- Conducted validation against >400 site years of phenoCam data
- Built computing environment and completed test runs on Amazon Web Services (AWS)
 - Will begin full scale processing of North America in the coming weeks
- Reached out the LP-DAAC to discuss data distribution and documentation

70°W

40°N

30°N

MODIS - 2016

-

50% Greenness increase

<april 15th</april 	May 1 st	May 15 th	June 1 st	June 15 th	>July 1 st
0		5	10		15 km

-

BOSTON UNIVERSITY

NC STATE UNIVERSITY

4 .

30

NASA

Land-Cover / Land-Use Change Program

50% Greenness increase

<april 15th</april 	May 1 st	May 15 th	June 1 st	June 15 th	>July 1 st
0		5	10		15 km

Land-Cover / Land-Use Change Program

70°W

40°N

30°N

HLS - 2018

50% Greenness increase

50% Greenness increase

Cropland Data Layer (2018)

1

Compare against phenoCam network

> 400 total site-years

Source: Richardson et al. 2018

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

40

NC STATE

UNIVERSITY

BOSTON

Feb 15, 2018

Tifton, Georgia

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

43

Comparison to PhenoCams

 ΠC

and-Cover / Land-Use Change Program

Oct 2, 2018

Acadia National Park, Maine

Douglas Bolton - LCLUC Science Team Meeting - April 11, 2019

NC STATE

UNIVERSITY

BOSTON

Conclusions

- Close to production of a 30m phenology product for North America
- Promising comparisons against phenoCam data

• Final steps:

- Full scale runs on AWS
- Delivery of data and documentation to LP-DAAC in the summer of 2019

Thank you!

Douglas Bolton dbolt@bu.edu www.bu.edu/lcsc

Land-Cover / Land-Use Change Program

LCLUC

NA SA

NC STATE UNIVERSITY 50% Greenness increase<April
15thMay
15thJune
15th>July
15th02.557.510 km

References

Melaas, Eli K., et al. "Multisite analysis of land surface phenology in North American temperate and boreal deciduous forests from Landsat." *Remote Sensing of Environment* 186 (2016): 452-464.

Richardson, A.D. et al 2018. PhenoCam Dataset v1.0: Vegetation Phenology from Digital Camera Imagery, 2000-2015. ORNL DAAC, Oak Ridge, Tennessee, USA.

Tan, Bin, et al. "Improved forest change detection with terrain illumination corrected Landsat images." Remote Sensing of Environment 136 (2013): 469-483.

Wang, Xiao-Yan, et al. "An effective method for snow-cover mapping of dense coniferous forests in the Upper Heihe River Basin using Landsat Operational Land Imager Data." *Remote Sensing* 7.12 (2015): 17246-17257.

