Mapping Global Urban Area from DMSP/OLS Nightlights using a Cluster-based Method

Y. ZHOU, S. SMITH, A.THOMSON, B. BOND-LAMBERTY, M. IMHOFF K. ZHAO, C. ELVIDGE, J. EOM, K. CLARKE

Joint Global Change Research Institute, PNNL/UMD Ohio State University NOAA National Geophysical Data Center University of California, Santa Barbara

LCLUC Program Science Team Meeting, April 23, 2014

Outline

Project background

- Motivations
- Scientific questions
- Research objectives

* Methodology

Preliminary results

- Global urban area
- China urbanization dynamics

Summary and future work

Motivations

- Urban population is projected to 70% by 2050
- Urbanization shows important impacts on environment
 - Global warming
 - Urban heat island
 - Energy demand
 - Water cycle
 - ·
- It is an important parameter in climate and environmental modeling
- A consistent global urban map series is lacking

Scientific questions

- Where and when did urbanization occur?
- What are the socioeconomic and natural causes of urbanization?
- What are the consequences of urbanization for the sustainability of our earth system?

Objectives

- A consistent global urban map series
- An integrated framework to project urban expansion
- Future urbanization scenarios and implications

Urban Mapping from nightlights A cluster-based method

1. Data Preprocess

2. Urban
Clusters
Segmentation

3. Logistic Model

4. Thresholds Estimation

5. Urban
Extent
Delineation

Y. Zhou et al, 2014. A cluster-based method to map urban area from DMSP/OLS nightlights, *Remote Sensing of Environment*, 147 (5): 173-185

Potential urban clusters

A logistic model

1. Data Preprocess 2. Urban
Clusters
Segmentation

3. Logistic Model

4. Thresholds Estimation

5. Urban
Extent
Delineation

Estimation of optimal thresholds

1. Data Preprocess

2. Urban
Clusters
Segmentation

3. Logistic Model

4. Thresholds Estimation 5. Urban Extent Delineation

Validations of estimated optimal thresholds

Urban extent from nightlights

Validations of mapped urban area

Global urban areas mapping

Global urban areas in 2000

Global urban areas (evaluation)

Global urban areas (6 products)

Urban dynamics mapping

- Inter-calibration of the annual nighttime lights products
- Parameterization of the logistic model
- Urban dynamics mapping using the cluster based method

Zhao, N., Y. Zhou, 2014. Correcting incompatible DN values and geometric errors in nighttime lights time series images. *IEEE transactions on Geoscience and Remote Sensing*. In review.

Urbanization in China (evaluation)

Urban area & population

Summary and future work

♦ Summary

- The cluster-based method performs well in mapping urban extents from nightlights over large areas
- The method shows its potential to map global urban areas and temporal dynamics
- The preliminary results indicate that urbanization shows large spatial and temporal heterogeneity

Future work

- Refine global urbanization mapping
- Predict future global urbanization
- Evaluate the environmental impacts of global urbanization

Acknowledgements

- NASA ROSES LCLUC Program
- Collaborators
 - S. Smith
 - A. Thomson
 - B. Bond-Lamberty
 - M. Imhoff
 - K. Zhao
 - C. Elvidge
 - J. Eom
 - K. Clarke
- Many colleagues and organizations that shared the data used in this project

