International Regional Science Meeting "Land Cover/Land Use Changes and Impacts on Environment in South/Southeast Asia" Johor Bahru, Malaysia 2019 July 22-31

Emission Projections of GHGs and Air Pollutants in ASEAN: Toward the Global 2 °C Target

HANAOKA Tatsuya

Center for Social and Environmental Systems National Institute for Environmental Studies

Greenhouse Gases, Short-Lived Climate Pollutants(SLCPs) Air Pollutants

What are the situation in ASEAN among ASIA and the world?

Global Anthropogenic Historical Emissions

SLCPs and air pollutants emissions from South-east and South Asia has been on the increase

Sectoral Anthropogenic Emissions in 2010 : Asia, ASEAN, OECD

Emission features between ASIA & OECD are different. (i.e. major emissions sources are different) Characteristics of ASEAN are in between ASIA and OECD.

Sectoral Anthropogenic Emissions in 2010 : Asia, ASEAN, OECD

To reduce tropospheric O₃, combinations of mitigation measures are necessary but complicated
 Reduction measures on transport sector is primary important, next building sector, and next ???

- Transport: Aviation
- Agriculture
- Agricultural waste burning

Source) made by author from EDGER 4.3.2

Socio-economic: historical trend and future projections in Asia

Characteristics of socio-economic dynamics are different depending on countries & scenarios South-east and South Asia has been rapidly increasing, following the past China.

Greenhouse Gases, Short-Lived Climate Pollutants(SLCPs) Air Pollutants

How much we need to reduce? What are Science-Policy agenda?

Meaning of Stay Below 2 °C IPCC AR5 WG3(2014) Chapter 6 Assessing Transformation Pathways

- Without more mitigation, global mean surface temperature might increase by 3.7 4.8°C by 2100.
- To stay below 2°C, the range of GHG emissions are roughly between 30-50 Gt CO₂eq in 2030.
- To stay below 2°C, **41–72% reductions by 2050 compared to the 2010 level** are required.

Different colors show different categories which Corresponding to 2 °C achieve the same CO2-eq concentration at the GHG Emission Pathways 2000-2100: All AR5 Scenariospoint in 2100 Annual GHG Emissions [GtCO₂eq/yr] 90th percentile > 1000ppm CO₂eq **RCP8.5** 120 720 - 1000 ppm CO.eq Median 580 - 720 ppm CO_eq 10th percentile Baseline 530 - 580 ppm CO,eq 100 480 - 530 ppm CO,eq 430 - 480 ppm CO₂eq Full AR5 Database Range 80 60 **RCP6.0** 40 20 RCP4.5 0 RCP2.6 -20 2060 2000 2080 2100 2100 2020 2040 41%~72% 2010 2050 reduction Reaching to ZERO emission in the end of the century Relative to 2010

Source) IPCC AR5 WG3 (2014), Figure SPM.4

Comparison of NDCs and Paris Agreement Climate Proposals

- Even if the NDCs collectively lower GHGs emissions compared to where current policies stand, but still imply a median warming of 2.6–3.1 °C by 2100
- Emission gaps between the INDCs and 2°C median pathway are 14 Gt CO2eq by the unconditional INDCs, 11 Gt CO₂eq by the conditional INDCs, in 2030

Research Questions

- Q1: How can we fill the Gap between NDCs and 2 degree target in Asia and ASEAN?
- Q2: What kinds of advantage and disadvantage, from the view points of air pollutants and SLCPs reduction, when considering deep decarbonization?

AIM/Enduse[Global] – Major characteristics

- Bottom-up type model with detailed technology selection framework with optimizing the total system cost, assessing technological transition
- Recursive dynamic model (=Calculating year by year)
- Analyzing effects of policies such as carbon/energy tax, subsidy, regulation and so on.

Note1) 🖌 shows the coverage of target gases in the model

Note2) Within the same gas-type,

shows most major emitting sector

shows 2nd major emitting sectors

shows relatively emitting sectors

shows minor sectors

Overview of Bottom-up type methodology : AIM/Endues model

This analysis consists of three parts;

- 1) setting future socio-economic growths,
- 2) estimating future service demands of each demand sector by using service demand models,
- 3) analyzing combinations of mitigation options by using a technology bottom-up model

Overview of mitigation measures

Around 200 - 300 mitigation measures are set in the AIM/Enduse model. Mitigation measures are selected depending on policy push and regulation, carbon pricing, subsidy.

Four major groups of 200 – 300 mitigation measures on GHG and air pollutants

- - ✓ desulfurization equipment [=SO₂ reduction],
 - ✓ denitrification equipment [=NOx reduciton],
 - ✓ dust-collecting equipment [=BC, PM reduction],
 - \checkmark fertilization management in agriculture [=N₂O reduciton],
 - ✓ manure management [=CH₄, N₂O reduction],
 - ✓ waste management [=CH₄ reduction]
- ② Improvement of quality of fuels
 Effective for reducing a specific gas
 - \checkmark shifting from high sulfur-content fuel to low-sulfur content fuel [=SO₂ reduction]
- ③ Improvement of energy efficiency < Effective for reducing multiple gases
 - ✓ high-energy efficient technologies and reduction of energy [=CO₂ APs BC reduction],
 - \checkmark Low-carbon power supply and electrification in demand side [=CO₂•APs• BC reduction]
- ④ Drastic energy shifting

- ✓ shifting from coal to renewables or natural gas [= CO_2 •APs• BC reduction],
- diffusion of hydrogen-fuel from renewables [=CO₂•APs• BC reduction]

Baseline Anthropogenic Emissions Scenario in ASEAN

1) Uncertainty of PM emissions is large, 2) emissions related to non-energy are necessary to be calibrated

2 °C Mitigation Scenario in ASEAN

Deep decarbonization measures have multiple effect for reducing large amount of air pollutants & SLCPs ASIA-PACIFIC INTEGRATED MODEL NIES JAPAN

2 °C Mitigation Scenario in ASEAN

Major mitigation sectors are different by gas, i.e. combination of multi-sector measures are important.
 Caveats are that 1) emissions from natural sources are out of scope, 2) technology database in this model does not consider some innovative technologies and non-energy related technologies due to the lack of information about cost, efficiency, etc.

Acknowledgment

This research was supported by the previous Environmental Research and Technology Development Fund (S-12) and the current Environmental Research and Technology Development Fund (2-1908), of the Environmental Restoration and Conservation Agency, Japan.

