MONITORING CANOPY STRUCTURE ACROSS MULTIPLE SCALES FROM LEAVES TO CANOPIES AND STANDS
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Abstract. Stand and landscape scale alternation of the mosaic composition of forests are ecological variables indicative of climate change. Changes in species composition of the northern forests have the potential to influence regional climate via biophysical
mechanisms. The leaf level physiological processes are among the climate variables that most directly control the dynamics of terrestrial ecosystem processes. Leaf optical properties are the source of information about leaf level physiological processes. The
objective of this research i1s to document the feasibility of deriving forest structural parameters — forest type composition, forest cover, tree density and crown shape — and leaf optical properties from multi-angle and hyperspectral data and demonstrate their
ability to capture changes in species composition and leaf level physiological processes 1n the northern forests. The methodology is based on the 1dea of retrieving canopy spectral invariants — the recollision and escape probabilities — from optical remote sensing
data. The spectral invariants are functions of the 3D canopy structure such as tree spatial distribution, crown shape and size, within-crown foliage arrangement and ground cover and thus have the potential to separate forest types based on stand geometry. These
variables are critical to account for 3D canopy structure effects in the relationships between surface reflectance data and leaf biochemical constituents. This poster summarizes our results.
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