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A B S T R A C T   

Satellite remote sensing methods have been proven to quantify the burnt areas resulting from different fire 
activities reliably. However, they were reported to perform poorly to identify crop residue burnt areas, partic-
ularly in smallholder systems due to lack of frequent and high spatial resolution satellite data. In this study, we 
used Harmonized Landsat Sentinel-2 (HLS) observations and evaluated two machine learning classifiers (i.e., 
Support Vector Machines (SVM) and Artificial Neural Networks (ANN)) to map sugarcane burnt areas for the 
2019–20 season in a smallholder farming region in Thailand. 

Results showed that both classifiers performed well in identifying the spatial patterns of sugarcane burnt areas 
in the region. The ANN outperformed SVM at both pixel and regional scales. At pixel level, ANN accuracy was 
93.4 % while SVM’s best-performing Polynomial kernel accuracy was 82.7 %. The ANN estimated average 
percent burnt area (51.1 %) in the region was closer to reported value (48.7 %) by Thailand’s Office of Cane and 
Sugar Board (OCSB), compared to the SVM estimate (62.9 %). The total estimated burnt areas by ANN and SVM 
(315 and 418 thousand ha, respectively) deviated more from OCSB’s area (240 thousand ha) compared to 
percent burnt area. However, area estimates from classifiers had significantly better accuracy than the estimates 
of MODIS burnt products. 

Overall, this study demonstrated that HLS observations provided required spectral information to build 
promising models to map burnt areas in smallholder systems with higher accuracy than global products. Our 
mapping algorithm using the ANN classifier showed the potential to monitor sugarcane burnt areas reliably, and 
contribute to the successful implementation of regulatory policies in Thailand.   

Introduction 

In many of the leading sugarcane producing countries, such as Brazil, 
India, China, Thailand and the United States of America, burning of crop 
residues, either pre- or post-harvest, has been a common practice [1]. 
Air pollutants (e.g., particulate matter) resulting from crop residue 
burning are found to cause serious human health problems [2]. In 
addition, they change the composition of the atmosphere and contribute 
to global climate change by affecting the radiation balance. Further-
more, sugarcane residue burning negatively impacts soil quality by 
causing the loss of soil organic carbon, nutrients and erosion, which, in 
turn, can have long-term implications for food production [3]. 

Due to serious human health and environmental concerns, there 
have been efforts to control sugarcane residue burning through placing 
regulatory policies. For example, the Thailand government introduced 

Green Cane Purchasing policy, starting in the 2019–20 to restrict sug-
arcane mills to purchase 30 % of the burnt cane in their total purchases 
and it is further tightened, limiting burnt cane purchases to 20 % starting 
from the 2020–21 season [4]. Similarly, in the State of São Paulo, one of 
the major sugarcane regions in Brazil, a legislation (Law 
N◦11.241/2002) was introduced to gradually eliminate the burning 
practice by 2031 [5]. Moreover, there have been various attempts, with 
varying success, to improve emission inventories associated with crop 
residue burning that can inform policies and help develop mitigation 
strategies [6]. 

Accurate mapping of burnt areas is essential for assessing the impacts 
of regulations on controlling burning. Additionally, it is necessary for 
accurately determining biomass emissions using bottom-up approaches 
to improve emission inventories, which are required for climate studies 
to understand the emission impacts on climate. 
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Satellite remote sensing has been widely used to develop methods for 
identifying active fires and burnt areas [7,8]. Algorithms developed for 
identifying active fires primarily rely on thermal anomalies (i.e., dif-
ference in brightness temperatures between potential fire and land cover 
around it) [9]. The brightness temperatures are determined using radi-
ances from thermal infrared bands (e.g., 10–11 µm). In contrast, burnt 
area mapping algorithms use differences in surface reflectance and/or 
spectral indices such as Burn Area Index (BAI) and the Normalized Burn 
Ratio (NBR)) to distinguish between burnt and no-burnt areas [10,11]. 

There are operational global products for both active fires (MOD14/ 
MYD14 and VNP14) and burnt areas (MCD64A1), produced using 
MODIS and VIIRS data [7]. Previous studies have consistently reported 
poor performance of these products in identifying burnt areas in crop-
lands, particularly in smallholder farming systems, where fields are 
smaller than 10 ha ([6,8,12,13]). Several factors contribute to this poor 
performance. Firstly, cropland fires are often short-lived, and satellite 
overpass times often do not match fire activity, making it challanging for 
satellite observations to capture active fire signals. Secondly, the course 
resolution (≥250 m) of these satellite instruments may not capture 
changes in spectral characteristics due to the small field sizes and the 
heterogeneity of croplands in smallholding systems. Finally, the land 
cover maps used to produce these operational global products only 
include broad cropland classes, lacking crop type maps, which are 
necessary for accurate determination of harvesting timing of individual 
crops. 

Recent advances in satellite remote sensing, such as Harmonized 
Landsat and Sentinel-2 (HLS) data [14], combine Landsat 8 and 
Sentinel-2 satellite observations to produce frequent optical observa-
tions, typically every 4–8 days. These frequent, high-resolution obser-
vations enable the identification of the changes in crop-specific 
characteristics with harvesting and burning events, allowing mapping of 
burnt and non-burnt areas resulting from crop residue burning in 
smallholding farming systems. 

Recently, machine learning approaches have been widely explored 
to map burnt areas. Unlike rule-based methods, machine learning ap-
proaches have the ability to learn the characteristics of burnt pixels from 
labeled training samples. Previous studies have employed various ma-
chine learning approaches, such as random forests [15–17], support 
vector machines[18–20] and neural networks [17,21–25], for burnt area 
mapping. However, there have been limited studies on the applicability 
of machine learning approaches for mapping burnt areas resulting from 
agricultural fires, particularly in smallholder farming systems. To the 
best of our knowledge, there are no studies on exploring the use of 
machine learning for sugarcane residue burnt area mapping. 

Given the need for a reliable method to map sugarcane crop residue 
burnt areas, this study aims to evaluate the performance of two machine 
learning approaches in mapping sugarcane residue burnt areas in 
smallholder systems in Thailand for 2019–20 growing season, using HLS 
satellite observations. Firstly, we generated a land cover map with crop 
types, including sugarcane, at a high spatial resolution (30 m) using 
Sentinel-1 Synthetic Aperture Radar (SAR) imagery. Next, we extracted 
sugarcane pixels from the land cover map and used them to retrieve 
corresponding satellite observations over the growing season from HLS 
data. These satellite observations, along with field observations of burnt 
and non-burnt areas, were used to develop mapping algorithms based on 
Support Vector Machines (SVM) and Neural Networks (NN). These al-
gorithms were implemented within a dominant smallholder farming 
region in Thailand. We choose SVM and NN classifiers as they represent 
separate groups of machine learning classifiers. SVM, similar to random 
forests, is a conventional classifier. We used SVM as a baseline to un-
derstand whether there is enough information in the raw multispectral 
bands to classify burnt areas. Neural networks, on the other hand, 
belong to a more powerful family of classifiers, and we used to assess 
their performance in improving mapping accuracy compared to the SVM 
method. 

Study region 

The study region is located in the central and northeast parts of 
Thailand (Fig. 1). It occupies six provinces. This region represents a 
dominant region of sugarcane cultivation, producing about 38 % of the 
total Thailand sugarcane production. The planting area of sugarcane is 
approximately 1.2 million ha. Most of the sugarcane cultivation area is 
rainfed (about 90 %) [26], and more than 80 % of the sugarcane in this 
region is cultivated on small farms with area less than 10 ha [27]. In this 
region, there are nine sugar mills. Other major crops cultivated in this 
area include rice, cassava, and maize. 

Brief description of the classifiers 

Support vector machines (SVMs) 

Support Vector Machines are a class of supervised classifiers based on 
statistical learning theory [28–30]. For a baseline configuration of bi-
nary classification, let the training dataset has N samples x1, x2,…, xN 
with corresponding labels y1, y2,...., yN where yi E {− 1, 1} for i = 1, 2,.., 
N. A simple linear SVM classifier for such a setting finds an optimal 
hyperplane W among many possible solutions by maximizing the margin 
defined as the sum of distances between the hyperplane and nearest 
positive and negative examples. So, the mathematical form of a Linear 
SVM hyperplane classifier can be represented with the following 
equation. 

W.X − b = 0 

Where b is an offset of this hyperplane from the origin; W is a 
parameter that determines the orientation of the hyperplane and X can 
be any point lying on this hyperplane. 

Assuming this data is linearly separable, SVM finds the maximum- 
margin hyperplane that maximizes the margin defined to be the dis-
tance between two hyperplanes parallel to the original classifier con-
taining the positive and negative training samples. As shown in Fig. 2, 
the training samples that lie on these parallel hyperplanes are called 
support vectors. So the goal of SVM is to find the hyperplane that 
maximizes the marginal distance between the hyperplanes containing 
the positive and negative support vectors. 

W.Xi - b >= 1 for all points X belonging to positive class yi=1 
(equality holds true for support vectors) 
W.Xi - b <= − 1 for all points X belonging to negative class yi=− 1 
(equality holds true for support vectors) 
Combining the above two, yi*(W.xi - b) >= 1 for all training samples 
1<= i <= N. 

Geometrically the margin distance between these two hyperplanes 
containing the support vectors is 2/||W||, thus the goal would be to 
minimize ||W||. To sum up a simple linear SVM optimization problem 
can be written as follows: 

Min ||W|| 
Such that yi*(W.xi - b) >= 1 for 1 <= i <= N 

However, for a complex training data distribution where the data is 
not linearly separable, we can extend a similar concept of LinearSVM but 
after transforming the data into a higher dimensional space where the 
data becomes linearly separable. Such a projection of data into a higher 
dimensional space can be achieved through kernel functions such as RBF 
kernel, polynomial kernel and sigmoid kernel. 

In our work, we used SVM with various kernels as the baseline to get 
the burnt mapping classification performance and understand the raw 
information present in the data. Then we compared it with Neural 
Network to better understand the power and capacity of these classifiers 
for mapping burnt areas. 
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Neural networks 

Neural Networks (NN) are a more powerful set of supervised classi-
fiers compared to SVM. NNs are an extension of Multilayer perceptron 
networks [31,32] that is inspired from the neural modeling of the brain, 
mimicking the way that biological neurons signal to one another. They 
contain various layers starting with an input layer followed by a set of 
hidden layers and ending with an output layer. Non-linear activations at 
every hidden layer makes the neural networks capable of handling 
non-linear data. Neural networks rely on the back-propagation algo-
rithm to update its state (parameters) to fit the training data better with 
each iteration of training. 

The core idea of Neural Networks has shown tremendous amounts of 
improvements in several tasks of Computer Vision [33], Natural Lan-
guage Processing [34], speech processing [35] and many more areas. 
Many remote sensing applications also started to take advantage of these 
powerful classifiers in their methods such as preseason crop mapping 
[36]. The architectural design of our NN was shown in Fig. 3 and details 
of the NN model was provided in the implementation Section 5.1. 

Data sources and preparation 

The datasets required to develop classifiers and map sugarcane burnt 
areas include: 1) a sugarcane mask to identify the sugarcane pixels, 2) 
field observations for training and validation, and 3) satellite observa-
tions as predictive variables. Fig. 4 illustrates the steps involved in 
preparing the data for the development and implementation of classi-
fiers. In Step 1, a sugarcane mask (30 m) was created based on the 2019 
land cover map produced using Sentinel-1 SAR data and Long Short- 
Term Memory (LSTM) deep neural network algorithm. In Step 2, 
harmonized Landsat 8 and Sentinel 2 (HLS) satellite observations [14] 
for nine spectral bands during sugarcane harvesting period were 
extracted for each harvested non-green sugarcane pixel using the sug-
arcane mask. In Step 3, HLS observations were extracted for burnt and 
non-burnt sugarcane field locations collected using wind-shield surveys 
in the study region. These observations were used for training, valida-
tion, and testing of NN and SVM models. In Step 4, the models were 
implemented over the sugarcane pixels using HLS observations and 
mapped sugarcane burnt and non-burnt areas for the 2019–20 growing 
season. The data sources and preparation steps are described in detail 
below. 

Sentinel-1 SAR satellite data 

The fundamental requirement for mapping post-fire burnt areas is 
the availability of a crop type mask to identify the location of sugarcane 
pixels. To produce a high-resolution land cover map that includes sug-
arcane, we used Sentinel-1 Synthetic Aperture Radar (SAR) imagery. 
Sentinel-1, a constellation of two satellites operating in a near-polar, 
sun-synchronous orbit, offers a 6-day local repeat pass with several 
modes, including the interferometric wide swath (IW) mode that we 
used for land cover mapping. We acquired a full time series stack of 53 
images for the year 2019 covering the study region from the Alaska 
Satellite Facility. The ground-range detected images were pre-processed 
using the SNAP Sentinel-1 toolbox. The pre-processing steps included 
orbit correction, thermal noise removal, radiometric calibration to cor-
rect for viewing geometry effect, terrain correction using NASA Shuttle 
Radar Topography Mission (SRTM) 30 m data [37], and speckle-noise 
filtering to reduce constructive and destructive interference. The im-
ages were then converted from linear values to logarithmically scaled 
values in decibels, resulting in VV and VH polarized imagery with 

Fig. 1. (a) Map of the Thailand and (b) study region comprising six provinces.  

Fig. 2. An illustration of a typical Linear SVM classifier for binary 
classification. 
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sigma-nought backscatter values in decibels [8]. 

Sugarcane mask 

Sugarcane mask was generated using the 2019 land cover map of the 
study region (Fig. 4). Firstly, a land cover map including sugarcane 
cultivated during the 2019–2020 growing season was produced using 
the sigma-nought backscatter values of sentinel-1 VV and VH polarized 
imagery and elevation data. The elevation data was extracted for the 
study region using NASA SRTM data [37]. We employed the Long 
Short-Term Memory (LSTM) deep neural network algorithm in Pytorch 
[36]. 

To create the model, we used available Sentinel-1 images to produce 
a sequence of 7-day composites resulting in 53 composite images with 
three bands (VV, VH, and elevation). For developing the model, we 
created labels with different land cover types for 1700 field polygons. 
These field polygons were intercepted with Sentinel-1 data to create a 
total of 50,450 training (70 %), validation (20 %), and testing (10 %) 
labeled pixels. 

The model was trained as a four-layered LSTM on the training and 
validation set. The final accuracy of the model was generated based on 
predictions on test data. Furthermore, the model was implemented over 
the study region, and sugarcane pixels were extracted to create a mask. 
The overall accuracy of the sugarcane mask is approximately 91 % 
(Fig. 5). 

Harmonized Landsat Sentinel (HLS) satellite data 

The classification methods we developed used harmonized Landsat 8 
and Sentinel 2 (HLS) observations from nine available spectral bands as 

predictive variables [14]. The HLS dataset provides radiometrically 
harmonized surface reflectance imagery from the Operational Land 
Imager (OLI) instrument onboard Landsat 8 and the MultiSpectral In-
strument (MSI) onboard Sentinel-2A and Sentinel-2B. Combined imag-
ery from these instruments produces time series observations with a 
frequency of 1–4 days at a spatial resolution of 30 m. Both Landsat and 
Sentinel imagery were treated with consistent atmospheric correction, 
cloud screening, geolocation, normalization of illumination and view 
angles, and spectral bandpass adjustments across sensors [38]. 

We acquired available HLS data (a total of 29 images) from 
December 1, 2019, to March 31, 2020, during the crop residue burning 
and harvesting season. The HLS dataset includes quality assurance (QA) 
data with flags identifying the occurrence of clouds, cloud shadows, and 
snow. Using the QA layer, we removed pixels with clouds, cloud 
shadows, and snow. 

Preparation of HLS data 

The HLS surface reflectance data of sugarcane pixels are required for 
developing and implementing model for burnt area mapping. The sug-
arcane map was projected to the same projection as HLS reflectance data 
(i.e., WGS 84 / UTM zone 47 N coordinate system). Then both sugarcane 
map and HLS data were overlaid with each other and extracted HLS 
reflectance data for all the bands corresponding to each sugarcane pixel. 
After harvesting without burning or burning, fields are expected to have 
no green pixels. Presence of green pixels indicates that either crop is still 
in the maturing stage and not harvested or the following crop is 
germinated. To remove green pixels in the HLS time series, we computed 
Normalized Difference Vegetative Indices (NDVI) and removed pixels 
that have NDVI greater than 0.3 as they are considered as green pixels. 

Fig. 3. Architecture of the Neural Network (NN) used for burnt area mapping. The NN model was designed with 9 nodes, representing reflectance of 9 spectral bands 
in the sentinel-2 data, and 3 hidden layers with 64, 128 and 64 nodes respectively with ReLU non-linear activation and ending with an output layer with one node for 
our binary classification prediction. 
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These HLS observations for non-green pixels obtained during the 
burning and harvesting period of sugarcane were used for development 
and implementation of models. 

Training, validation, and test data 

To train both SVM and NN classifiers and test their performance, we 
conducted windshield surveys during harvesting season of 2019–20 
growing season and collected information on residue management 
practices from 480 sugarcane fields across the study region (Fig. 6). 
Using these fields, the total of 22,000 sample pixels (30-m), by inter-
secting with sugarcane mask. We considered 81 % of the total samples 
for training the classifiers, 9 % as the validation set to select the best 
model, and 10 % as a test set to report testing performance for the 
trained models. When sampling, pixels that had 65 % of the total frac-
tion covering the fields, to ensure that HLS data used in developing 
models reflects spectral properties of sugarcane fields. 

Development and implementation of the models 

NN based method 

We used the pytorch framework in python to define, train and 
develop a NN method. As shown in Fig. 3, we defined a NN with 9 nodes, 
representing reflectance of 9 spectral bands in the sentinel-2 data, and 3 
hidden layers with 64, 128 and 64 nodes respectively with ReLU non- 
linear activation and ending with an output layer with one node for 

our binary classification prediction. We also used batchnorm [] at every 
layer except for the final output layer. To sum up, the architecture was 
designed as follows: [Linear(9, 64), BatchNorm, ReLU], [Linear(64, 
128), BatchNorm, ReLU], [Linear(128, 64), BatchNorm, ReLU], [Linear 
(64, 1)]; where Linear(M, N) is a fully connected network connecting 
two layers with M and N nodes respectively. To train this NN, we used 
BCEWithLogitsLoss (BinaryCrossEntropy for Logits loss) from the 
pytorch package along with Adam’s optimizer and a learning rate of 
0.001. We trained this NN for 5000 epochs. 

SVM based method 

We used the scikit-learn package in Python to develop an SVM-based 
method. The package offers inbuilt kernel functions such as Linear, RBF, 
polynomial, and sigmoid which we utilized. We used the raw band 
values as input and trained different SVMs on different kernels on the 
{train+val} dataset. We then reported the testing performance by 
implementing the method on the test set. Since the SVM’s feasibility is 
being studied, default parameters were used. For instance, C (regulari-
zation) was set to 1.0, and gamma was scaled internally based on the 
variance of the training samples. 

Implementation of models 

Both NN and SVM trained models were implemented on pre- 
processed HLS time series data of sugarcane pixels, covering the 
whole study region, and estimated burnt and no-burnt sugarcane pixels 

Fig. 4. Schematic illustrating steps for HLS data preparation for model development and implementation.  
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during the harvesting period from December 01, 2019 to March 31, 
2020. 

Accuracy assessment 

Pixel level evaluation 

The performance of the NN and SVM-based methods was evaluated 
at both pixel and regional scales. For pixel-level evaluation, we used the 
test data, while regional-scale performance was assessed using Thai-
land’s Office of Cane and Sugar Board (OCSB) reports on provincial-level 
sugarcane production by harvesting practices. 

At the pixel level, for the SVM-based method, we obtained the 
maximum-margin hyperplane parameterized by W and b. All pixels in 
the test set were classified based on their location on the hyperplane, 
and classification was computed as the ratio of the number of pixels 
correctly classified over the total number of pixels in the test set. 

For the NN-based method, pixel-level performance was evaluated at 
two steps. Firstly, validation was performed on the validation data 
during model development. During this process, as the model was 
trained for 5000 epochs, we measured the validation accuracy at regular 
intervals by feeding validation pixels to the trained NN model. We used a 
sigmoid activation function to squash the NN predicted output between 
0 and 1, and applied a threshold of 0.5 to classify them as burnt (1) or no- 
burnt (0). Once the model with the best validation performance was 
selected, we implemented it over the pixels in the test data and assessed 
classification accuracy using the confusion matrix (Fig. 7C). 

To evaluate the statistical significance and superiority of one clas-
sifier compared to the other, we used McNemar’s test [39]. McNemar’s 
test is a parametric test based on the chi-squared distribution (χ2). It 
tests the null hypothesis that the two classifiers have equal performance. 

χ2 = (fn − fm)
2/
(fn + fm) (1)  

where fn represents the number of observations that classifier one 
incorrectly classified but classifier two correctly classified, and fm rep-

Fig. 5. Sugarcane mask (30 m) produced using 2019 land cover map developed 
using LSTM deep neural network algorithm and sentinel-1 SAR data. 

Fig. 6. Green filled circles represent locations of burnt and no-burnt sugarcane fields. These field coordinates were collected using windshield surveys.  
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resents the number of observations that classifier one correctly classified 
but classifier two wrongly classified. 

In addition, to understand the performance of both classifiers in 
terms of burnt area detection accuracy, we computed three performance 
metrics described by Kontoes et al. [40]. These include detected area 
efficiency (DAE), skipped area rate (SAR, omission error) and false area 
rate (FAR, commission error). These metrics were computed using 
following formulae: 

Detection Area Efficiency (DAE) =
DBA

DBA + SBA
(2)  

False Area Rate (Commission Error) =
FBA

DBA + FBA
(3)  

Skipped Area Rate (Ommission Error) =
SBA

DBA + SBA
(4)  

Regional scale evaluation 

The regional scale performance of the NN and SVM methods were 
assessed by comparing them with OCSB reports (Office of Cane and 
Sugar Board [41]) for the 2019–20 sugarcane harvesting period. The 
OCSB provides data on total procured sugarcane by practice (i.e., fresh 
sugarcane that is not burnt and burnt sugarcane) at each sugarcane 
processing unit in Thailand for every year. Typically, sugarcane is 
cultivated in the vicinity of the sugarcane processing unit. Each province 
where sugarcane is cultivated, has 1–3 sugarcane processing units. We 

aggregated the total procured sugarcane at processing units in each 
province and this total was considered as provincial level sugarcane 
production by practice. Using fresh and burnt cane production, we 
computed percent burnt area and total burnt area in hectares by prov-
ince. Similarly, we aggregated all the classified pixels, using NN and 
SVM methods, in the study region by practice and by province. These 
provincial level aggregated estimates were compared with OCSB based 
percent burnt area and total burnt area and estimated absolute per-
centage error. 

Results and discussion 

Pixel level performance 

Performance of NN classifier 
Two-level performance assessment was conducted: (1) validation 

during model development and (2) validation after implementation. The 
training and validation accuracies and losses over the training period are 
shown in Fig. 7. It can be observed that as the training progressed with 
epochs, the training loss was reduced, and the accuracy increased to 
almost 100 %, indicating that the NN classifier learned to fit the training 
data accurately. A similar curve pattern for validation loss and accuracy 
implies that the NN is able to generalize its performance when imple-
mented over a large region by matching the pattern in the training 
curves. The best validation accuracy was observed to be 93 % at epoch 
3393. We used this best model to evaluate the performance at a regional 
scale using the test data. The results showed that the test accuracy of the 

Fig. 7. (a) Training and Validation Accuracies, (b) Training and Validation Losses (c) Confusion Matrix on the test data.  
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final model is 93.43 % 

Performance of SVM classifier 
Results indicated that all kernel functions except sigmoid kernel 

performed reasonably well with accuracy greater than 80 %. Polynomial 
and Radial Basis Function (RBF) kernels performed the best with 
approximately same accuracy (Polynomial=81.2 % & RBF=79.8 %) 
SVM performed the best with accuracy of 81.2 %, followed by Linear 
kernel (80.2 %). The performance of the sigmoid kernel (28.6 %) is 
significantly inferior compared to the other three. The Polynomial and 
RBF kernels project the training data into a higher dimensional space 
where finding a classifier hyperplane is relatively more successful than 
finding one in the original space offered by the Linear and Sigmoid 
kernels. Similar findings were reported in the previous studies focusing 
on land cover classification [42,43]. 

These results indicated that the SVM classifiers underperformed 
relative to the NN classifier, which was confirmed by results of McNe-
mar’s test and burnt area detection accuracy metrics. 

As shown in a two by two contingency table (Table 1), of the total 
213 fields compared for accuracy assessment, NN method classified 147 
fields correctly which were wrongly classified by SVM. Whereas NN 
classified 9 fields incorrectly that were classified correctly by SVM. Both 
methods classified 52 correctly and 5 fields incorrectly. McNemar’s test 
suggested a chi-square test statistic value of 122 which exceeded the chi- 
square critical value of 3.84 (alpha=0.05). Therefore, the null hypoth-
esis that both the NN and the SVMs were equal in performance was 
rejected and the relatively higher superiority of the NN method over 
SVM was accepted. 

As shown in Table 2, the NN method has considerably higher burnt 
area detection efficiency and lower skipped area rate and lower false 
area rate compared to the SVM method. 

The possible reasons for lower performance of SVM method could be 
the number of training samples and input variables used in the training. 
Previous studies comparing SVM and NN for classification reported that 
SVM outperformed or equally compared to NN when training samples 
are fewer [44]. However, as the number of training samples increased, 
NN was found to outperform SVM method. Li et al. [45] reported higher 
accuracy with NN method with relative to SVM to predict active fires 
when used approximately 20,000. In our study, about 18,000 samples 
were used in the training which appeared to be optimal for NN to ach-
ieve better performance over SVM. Similarly, the number of explanatory 
variables used in the training also impacts the performance of SVM 
methods. Higher the number of explanatory variables, better the accu-
racy achieved with SVM approaches. Previous studies found that NN 
methods performed better over SVM with sub-optimal number of 
explanatory variables [46]. We used nine spectral bands as input vari-
ables which might be sub-optimal for SVM to perform equally to NN 
method. 

Comparison of regional scale performance 

The burnt area maps generated by the NN and SVM classifiers and 
their spatial patterns are illustrated in Fig. 8a & b. Although the number 
of burnt pixels in the SVM map was considerably higher (Fig. 8c), the 
spatial patterns of both maps were found to be consistent. For instance, 
the southwest provinces of the study region had higher burnt pixels 
compared to the northeast provinces. As shown in Fig. 8a & b, the 
percentage of burnt area in Lop Buri and Sara Buri provinces, which are 

in the southwest part of the study region, was 71.10 % (SVM 
estimate=82.80 %) and 55.93 % (SVM estimate=68.72 %), respectively. 
On the other hand, Chaiyaphum and Khon Kaen provinces in the 
northwest region were estimated to have lower burning percentages, 
42.21 % (SVM estimate=56.01 %) and 41.04 % (SVM estimate=46.46 
%), respectively. 

Comparison of NN and SVM estimates with OCSB reported numbers 
showed that the NN percent burnt area estimates are more closely 
aligned with OCSB reported values than SVM estimates (as shown in 
Fig. 9). The average NN and SVM-based percent burnt areas in the study 
region for the 2019–20 growing season were 51.08 % and 62.90 %, 
respectively, which were 4.86 % and 29.13 % higher than the OCSB 
percentage burnt area of 48.71 %. However, the absolute percentage 
error varies considerably among the provinces, ranging from 0.19 % to 
19.59 % for NN estimates and from 13.34 % to 74.28 % for SVM esti-
mates. The estimates for Chaiyaphum province exhibited the highest 
percentage error for both NN and SVM approaches. This could be 
attributed to the very low percentage burnt area reported for Chaiya-
phum province by OCSB. OCSB reported only one sugarcane processing 
plant in Chaiyaphum province, and the reported burnt area for the 
2019–20 growing season was 29 %, significantly lower than the average 
reported value for the study region. 

Discrepancies in total areas 

Although the burnt percentages were in good agreement with OCSB 
reports, particularly the NN approach, the area estimates were found to 
have higher uncertainties, regardless of the approach (Fig. 10). The total 
estimated burnt areas by the NN and SVM methods in the study region 
for the 2019–20 growing season were approximately 315 and 418 
thousand ha, respectively, whereas the OCSB reported area was 249 
thousand ha. The mean absolute percentage errors, estimated based on 
the OCSB report, were 26.99 % and 59.02 % for the NN and SVM esti-
mates, respectively. The good agreement of percent burnt areas but 
discrepancies in the area estimates suggested that the area uncertainties 
originated from factors other than the SVM and NN classifiers. One such 
source of uncertainty is the sugarcane mask. The total sugarcane area 
estimated from the sugarcane mask was considerably higher than the 
OCSB reported sugarcane area, by 23 %. 

Comparisons of global products 

To understand the relative performance of SVM and NN classifiers for 
mapping burnt areas with reference to global products, we compared 
SVM- and NN-based products with two global burnt area products: a) the 
MODIS Terra and Aqua combined MCD64A1 Version 6 (500 m) burnt 
area product, and b) the MODIS FIRECCI51 (~250 m) burnt area 
product. The MCD64A1 is a monthly product produced using MODIS 
surface reflectance data (500 m) and active fire observations (1KM) [7]. 
The FIRECCI51 product is also a monthly product produced using Near 
Infrared Red reflectance from the MODIS reflectance product (250 m) 
and MODIS active fire data [47]. The global products were intersected 
with the sugarcane map to extract burnt sugarcane pixels and estimate 
the total burnt area in the region (Fig. 11). 

The MCD64A1 and FIRECCI51 products estimated 46 and 67 thou-
sand ha burnt area in the study region for 2019–20 growing season, 
respectively. These estimates were significantly lower than OCSB’s 

Table 1 
Contingency table for the predictions from SVM and NN models on the test 
dataset.   

SVM (Correct) SVM (Incorrect) 

NN (Correct) 52 147 
NN (Incorrect) 9 5  

Table 2 
Ratio of detected, skipped and false areas with respect to the ground-truth area 
for NN and SVM predictions on the test dataset.   

Detected Area 
Efficiency ↑ 

Skipped Area Rate 
(Omission Error)↓ 

False Area Rate 
(Commission Error)↓ 

SVM 43.6 56.31 67.6 
NN 94.1 5.8 7.6  
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Fig. 8. Comparison of predicted burnt (red colored pixels) and no-burnt (green colored pixels) maps of neural network (NN) model (a) and support vector machines 
with polynomial kernel function (SVM) model (b). Difference between SVM and NN predicted burnt pixels (c), Burnt pixels-SVM represents pixels that SVM model 
predicted as burnt but NN model classified as no burnt while Burnt-NN indicates pixels that NN model classified as burnt but SVM model predicted as no burnt. 

Fig. 9. Comparison of aggregated percent burnt areas by province, determined based on neural network (NN) and support vector machines (SVM) with Office of 
Cane and Sugar Board (OCSB) of Thailand. 
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reported estimate of 249 thousand ha. The MCD64A1 estimate was 82 % 
lower while FIRECCI51 estimate was 73 % lower than OCSB’s reported 
burnt area. Little extra burnt area might have resulted due to over-
estimation of sugarcane pixels in the sugarcane map. If additional burnt 
area was excluded, sugarcane burnt areas would have been much lower 
in both global products. Both NN and SVM methods overestimated while 
global products underestimated the burnt areas compared to the OCSB 
reported value. However, both machine learning classifiers showed 
better agreement with the OCSB report. 

Conclusions 

Given the need for accurate methods to map crop residue burnt areas 
and the limited studies on machine learning approaches for this purpose, 
this study evaluated the performance of two machine learning ap-
proaches, support vector machines with different kernel functions, and 
artificial neural networks, in mapping sugarcane burnt areas in a 
smallholder farming region located in Central and Northeast Thailand. 
The major challenge to develop reliable methods for mapping crop 
residue burnt areas in smallholder farming systems is the lack of crop- 
specific satellite observations to capture burnt areas’ spectral signals. 

Addressing this issue, reliable sugarcane maps were produced by uti-
lizing frequent observations of sentinel-1 SAR data and Long Short Term 
Memory (LSTM) deep neural network algorithm. Additionally, the use of 
harmonized Landsat 8 and Sentinel 2 (HLS) satellite observations with 
high temporal resolution (4–8 days) helped obtain the required spectral 
information specific to sugarcane during short burning and harvesting 
periods, which allowed the development of robust SVM and NN models. 

The pixel level evaluation indicated that both SVM and NN methods 
performed well, achieving an accuracy of over 80 % in identifying 
sugarcane burnt areas. Among the SVM kernel functions, the Polynomial 
and Radial Basis Function kernels showed better performance than the 
linear and sigmoid functions. The NN approach was found to be more 
accurate than the SVM approach, with an accuracy difference of more 
than 10 %. The regional scale comparison showed that both NN and 
SVM estimates captured regional differences in burnt areas, despite 
some discrepancies in the number of burnt pixels identified by both 
methods. The SVM method’s estimated percent burnt area showed a 
higher discrepancy (62.90 %) compared to the OCSB reported percent-
age (48.71 %), while the NN estimate (51.08 %) showed closer agree-
ment with less than 5 % difference. However, the total estimated burnt 
area showed greater deviation from the OCSB reported value due to 

Fig. 10. Comparison of aggregated total burnt areas by province, determined based on neural network (NN) and support vector machines (SVM) with Office of Cane 
and Sugar Board (OCSB) of Thailand. 

Fig. 11. Burnt areas extracted for Sugarcane pixels from two global products (a) MCD64A1.006 (500 m) (b) FIRECCI51 (~250 m).  
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some misclassification errors in the sugarcane mask. Overestimating the 
sugarcane area in the mask led to higher total estimated burnt areas by 
both SVM and NN methods. In comparison, the MODIS-based global 
burnt area products, MCD64A1 and FIRECCI51, substantially under-
estimated the burnt areas, with a 82 % and 73 % lower estimate than the 
OCSB report. The machine learning methods developed in this study, 
particularly the NN method, performed considerably better in terms of 
capturing spatial trends and total estimated area. 

Uncertainties in the regional-scale results from both models could be 
due to misclassification errors of sugarcane and the approximate har-
vesting time used in our study. Future studies will aim to improve the 
sugarcane mask by incorporating a greater number of field observations 
for labeling land cover types, and produce spatially resolved harvesting 
timings using satellite data and field observations. The field of machine 
learning has been evolving rapidly, and new techniques like trans-
formers as well as robust pre-trained deep learning methods such as 
DeepLab3+ and U-net have shown great promise for many applications 
such as maturity levels of fruits and crop disease identification [48–50]. 
We plan to explore these new methods to classify burnt and no-burnt 
areas. Furthermore, we plan to evaluate the performance of these ma-
chine learning models for other crops such as rice and other dominant 
regions of smallholding farming systems. 
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