Integrated Monitoring of Forest Life Cycle Using Time Series Landsat Observations and Field Inventory Data

Chengquan Huang, Xin Tao, Feng Aron Zhao, Karen Schleeweis, Pui-Yu Ling, Feng Robin Zhao, Jeffrey Masek, Zhiliang Zhu, Jennifer Dungan, and Samuel Goward

> Department of Geographical Sciences, University of Maryland USDA Forest Service Rocky Mountain Research Station NASA Goddard Space Flight Center NASA Ames Research Center US Geological Survey

> > Contact: cqhuang@umd.edu

LCLUC SARI International Regional Science Meeting in South/Southeast Asia, Chiang Mai, Thailand July 17-19, 2017

Many Important Questions About Forest Life Cycle

Overall Approach

Booming of Time Series Methods for Disturbance Mapping

- Trajectory based
 - LandTrendr (Kennedy et al. 2007, 2010)
 - Vegetation change tracker (VCT) (Huang et al. 2010)
 - UBC-CFS (Univ. of British Columbia-Canadian Forest Service) (White et al. 2014, Hermosilla et al. 2015a, b)
 - Image Trends from Regression Analysis (Vogelmann et al. 2012)
- Classification/machine learning based
 - Hansen-Potapov (Hansen et al. 2008, Potapov et al. 2012)
 - Multi-index Integrated Change Analysis (Jin et al. 2013)
- Deviation from model prediction
 - Continuous change detection and classification (CCDC) (Zhu et al. 2014)

Forest Disturbance Mapping Using Vegetation Change Tracker (VCT)

VCT Validated Across the US

WRS2 Path/row	Location (State)	Overall accuracy	Average producer's accuracy	Average user's accuracy
12/31	Massachusetts	0.87	0.60	0.62
15/34	Virginia	0.84	0.67	0.78
21/37	Mississippi/Alabama	0.84	0.64	0.79
27/27	Minnesota	0.82	0.64	0.80
37/34	Utah	0.86	0.31	0.50
45/29	Oregon	0.86	0.57	0.72
16/35	North Carolina	0.87	0.82	0.83
47/27	Washington	0.94	0.92	0.92
42/29	Idaho	0.91	0.83	0.82

(Huang et al. 2009, 2010, 2011, 2015; Thomas, Huang et al. 2011)

Distributed at ORNL DAAC

https://daac.ornl.gov/NACP/guide s/NAFD-NEX_Forest_Disturbance.html

A 30-Year Annual Disturbance Record for US and Canada

Disturbance Year Classes

More About Disturbance

- Attributes provided by VCT
 - Disturbance location
 - Timing
 - Spectral based intensity
- Other desirable details
 - Disturbance agent
 - Physically based disturbance intensity
 - Harvested timber volume

Disturbance Agent

Response Classes:

- Harvest
- Wind
- Fire
- Stress *
- Conversion
- Other

Random Forest Classification

Overall Accuracy = 75%

Harvest:

Commission/omission rates: ~25%

Predictor Variables

- VCT outputs
- Temporal profile shapes & related metrics (Meyer 2008; Moisen et al. 2016)
- Ancillary data

Training data

(Moisen et al. 2016; Schroeder et al. accepted)

Forest Harvest Area in NC

Average annual harvest area: 1110 km²

~1.5% of forest land in NC

Harvest Intensity

Vegetation Change Tracker (VCT)

USFS Forest Inventory and Analysis (FIA) plot data

- One plot every 5 km
- Measure and track each tree
- Revisit every 5-10 years

(Tao, Huang et al., in preparation)

Verification of Disturbance Intensity Using Available GoogleEarth Images

July 2006

October 2008

Percent Basal Area Removal

Distribution of Disturbance Intensity in North Carolina

Disturbance Intensity Histogram

According to USFS/FIA (Smith et al. 2009), clear cut accounted for 41% of total harvest area.

Timber Product Output (TPO)

- Target: survey estimation of timber product output (TPO)
- Predictor variables: disturbance area, type, intensity, forest type, etc.
- Methods: Stepwise linear regression; panel based modeling

Recovery detected by 2010

Validation of VCT Post-Disturbance Recovery Detection

Circa 2010 GoogleEarth

No detectable recovery by 2010

Validation of Recovery Mapping over Yellowstone

(Zhao. Huang et al., 2016)

Forest Age

- Forest regenerating from a previous disturbance
 - Age since disturbance

- Undisturbed forest
 - 30+ year Landsat observations indicative of age

Reflectance trajectories of Doug. Fir forests of different ages

Assessment of Age Modeling Over North Carolina

Undisturbed forest

(Tao, Huang et al., in preparation)

Height and Biomass

H, Biomass = f(age, species, local environment and climate conditions)

- Widely used in forestry for individual forest areas
- Large area use difficult
 - Required inputs not available
 - Spectral trajectory of growth could be used as surrogates
 - Biomass = f(age, spectral data)

Assessment of Biomass Modeling Over North Carolina

Forest regenerating from a previous disturbance

(Tao, Huang et al., in preparation)

Landsat Time Series + Inventory -> Characterization of Forest Life Cycle

