Impacts of springtime carbonaceous aerosols in northern peninsular Southeast Asia and the western North Pacific: An overview

Shantanu Kumar Pani National Central University, Taiwan

International Meeting on Air Pollution in Asia

3rd February, 2023

C TemplatesWise.con

Biomass-burning in Southeast Asia (SEA)

© TemplatesWise.com

Overview of biomass-burning over northern peninsular Southeast Asia

Warming or Cooling?

absorb/scatter

Fire activity over North Thailand in 2016

Forest Fire Agricultural Burning Grassland Fire Punsompong, Pani et al. (2021); Atmos. Environ.

hardwood + softwood

flaming + smoldering

OC (organic carbon), BC (black carbon) \longrightarrow strongly absorb K⁺, Na⁺, Ca²⁺, Mg²⁺, NH₄⁺, H⁺, Cl⁻, H₂SO₄, HSO₄⁻, SO₄²⁻, and NO₃⁻ Adverse Environmental/Climatic Impacts

Aerosol and cloud interaction: a case study

Event on 21 March 1999

(Courtesy: Christina Hsu, NASA)

© TemplatesWise.com

Seven SouthEast Asian Studies (7-SEAS) project

Transport mechanism of springtime smoke from Southeast Asia to downwind Oceanic regions (Lin et al., 2013, Atmos. Environ.)

7-SEAS/BASELInE 2013-2015 spring campaigns

Biomass-Burning Aerosols & **Stratocumulus Environment:** Lifecycles and Interactions Experiment

Scientific Issues:

- A. BB characterization at near-source region in SEA
- B. Lifecycle of BB aerosols from source to receptor regions
- C. Aerosol-radiation interactions
- D. Aerosol-cloud interactions

Synergistic 7-SEAS/BASELInE deployments of AERONET/MPLNET, SMARTLabs mobile laboratories, and regional contributing instruments along the "river of smoke aerosols"

Tsay et al. (2016), AAQR test lise com

Doi Ang Khang supersite (DAK)

1,534 m MSL northern Thailand

Air quality and aerosol in-situ

Radiation

Chemistry sampling

7-SEAS 2010-2015 in-situ instrumentation

NASA COMMIT- Dongsha, Son La Air quality mobile - Hengchun NASA ACHIEVE Yen Bai NCU mobile 1 - Doi Ang Khang NCU mobile 2 - Hengchun In Dongsha supersites

Severe BB aerosol loading over Peninsular SEA

7-SEAS/BASELInE 2014 Campaign

Wang et al. (2015), AAQR

Contribution of chemical components to aerosol loading and radiative forcing at Doi Ang Khang

 BC contributed <u>~6% to ambient PM_{2.5}</u>; its contribution to <u>AOD</u> <u>was ~12%</u>; <u>~75% to the atmospheric forcing</u> due to <u>composite aerosols</u>
7-SEAS/BASELInE 2013 Campaign Pani et al. (2016b); Aerosol Air Qual. Res.

Radiative response of BB aerosol over Chiang Mai

	Low-BB	Mild-BB	High-BB E	xtreme-BB
LG (Levoglucosan; µg m ⁻³	³) 0.6 ± 0.2	1.1 ± 0.5	2.0 ± 0.4	3.5
OC (μg m ⁻³)	22.5 ± 4.3	29.2 ± 8.3	41.3 ± 7.8	72.0
EC (μg m ⁻³)	4.3 ± 0.8	5.5 ± 1.5	7.6 ± 1.4	13.3
OC_{BB} to $OC(\%)$	42 ± 10	60 ± 14	77 ± 0	79
OC _{ANTHRO} to OC (%)	58 ± 10	40 ± 14	23 ± 0	21
EC _{BB} to EC (%)	39 ± 9	57 ± 15	75	77
EC _{ANTHRO} to EC (%)	61 ± 9	43 ± 15	25 ± 0	23
BB to PM _{2.5} (%)	52 ± 16	54 ± 14	63 ± 0	79

7-SEAS/BASELInE 2014 Campaign

Pani et al. (2018); Sci. Total Environ.

Chemical profile of BB-induced aerosols in northern peninsular SEA Doi Ang Khang (DAK; mountain; near-source of BB)

vs Chiang Mai University (CMU; foothill; urban)

- **Organic matter** (OM) was the most abundant
- OM/OC ratio were **1.7 ± 0.3 for DAK** and **1.6 ± 0.3 for CMU**.
- EC & dust (%) were higher at CMU due to addition of traffic sources with BB.

7-SEAS/BASELInE 2015 Campaign

Pani et al. (2019); Atmos. Res.

Black carbon over Chiang Mai

- Mean MAC (mass absorption cross-section) of BC was 9.3 m² g⁻¹ at 880 nm
- BB contributed as high as 92% to daily BC concentration (59% on average).
- Health risk of BC was estimated to be as high as 11 number of passively smoked cigarettes per day in March.

Follow-up spring campaign 2016

Pani et al. (2020); Environ. Poll.

Brown carbon light absorption over Chiang Mai

Fires over northern PSEA in March-April, 2016 Courtesy: NASA's FIRMS

- Light absorption of carbonaceous aerosols over Chiang Mai, Thailand
- Median MAC value of BrC was 2.4 m² g⁻¹ at 370 nm

Strong associations with BB tracers

Follow-up spring campaign 2016

Pani et al. (2021); Environ. Poll.

Aerosol light scattering over Chiang Mai Knowledge of mass scattering cross section (MSC) is also important in addition to MAC. $[PM_{2.5}] = [(NH_4)_2SO_4] + [NH_4NO_3] + [Dust] + [Others] + [EC] + [OM]$

 Site-specific MSC of (NH₄)₂SO₄, NH₄NO₃, OM, Dust, and Others are 4.0, 2.4, 4.5, 2.5, and 4.1 m² g⁻¹ at Chiang Mai.

Follow-up spring campaign 2016

Pani et al. (2023); Sci. Total Environ.

Two-layer aerosol transport over South China Sea

Wang et al. (2013), Atmos. Environ.

Aerosol radiative effect for two-layer aerosol transport over South China Sea

DARE_{SFC}: Direct Aerosol Radiative Effects at Surface

7-SEAS/Dongsha Experiment 2010

Pani et al. (2016a); JGR-Atmosphere

Lulin Atmospheric Background Station (LABS)

2864 m MSL, central Taiwan

Transport efficiency of BC from northern PSEA to Lulin Atmospheric Background Station (LABS)

Transport efficiency of BC from PSEA to LABS = 68%

~32% loss in BC (6.4% loss per day) was estimated for the atmospheric transport of BB emissions from PSEA to LABS (Taiwan).

7-SEAS/BASELInE 2013 Campaign

Pani et al. (2019); Atmos. Environ.

Humic-like substances (HULIS) in springtime PM₁₀ at LABS: Abundance and light-absorption

- HULIS at LABS was mostly attributed to both primary and secondary sources.
- BB was the dominating factor of HULIS abundance at LABS
- MAC_{HULIS} was $1.16 \pm 0.75 \text{ m}^2 \text{ g}^{-1}$ at 370 nm during BB-dominated period.
- SFE_{HULIS} (the amount of energy added to the Earth-atmosphere system by a given aerosol mass in the atmosphere) was 4.16 W g⁻¹ during BB-dominated period.

7-SEAS/BASELInE 2013 Campaign

Pani et al. (2022); Sci. Total Environ.

Aerosol component trends at Mt. Lulin

OC, EC, and nss-K⁺ exhibited a decreasing trend.

Aerosol component	Sen's slope (yr ⁻¹)	Trend (% yr ⁻¹)
$PM_{2.5} (\mu g m^{-3})$	-0.0011	-0.27
$OC (ng m^{-3})$	-0.7410	-0.67^{a}
$EC (ng m^{-3})$	-0.1330	-0.48
$nss-K^{+} (ng m^{-3})$	-0.0325	-0.71^{a}
Levoglucosan (ng m ⁻³)	0.0004	0.07
NO_{3}^{-} (ng m ⁻³)	0.0790	0.64 ^a
$nss-SO_4^{2-}$ (ng m ⁻³)	-0.0690	-0.08
AOD _{500 nm}	-0.0001	-1.04^{b}
Total rainfall (mm)	-0.0672	-0.34

^a Trends are significant at p < 0.05 level.

^b Trend is significant at p < 0.01 level.

Long-term (2003-2018)

Singh et al. (2020), Environ. Poll.

Linking of chemical composition and optical properties of BB influenced aerosols at LABS

Estimated dry MSCs of <u>(NH₄)₂SO₄, NH₄NO₃, OM, and Dust</u> were <u>3.20, 12.58</u>, <u>2.54, and 2.12 m² g⁻¹</u>, respectively. Likewise, estimated dry MACs of **EC and OC** were **7.30 and 0.83 m² g⁻¹**, respectively.

Data included: 2020 March

Pani et al. (2022); Sci. Total Environ.

Questions Please?

Contact: shantanukumarpani@gmail.com http://aerosol.atm.ncu.edu.tw

