Early Warning System using a multi-sensor Disturbance Index

Sean Healey, Eric Bullock, Zhiqiang Yang, Carole Andrianirina, Rasmus Houborg, Sylvia Wilson

Partner: Laboratoire d'Observation des Forêts de Madagascar (LOFM), Bureau National des Changements Climatiques et de la REDD+ (BNCCREDD+), Ministère de l'Environnement et du Développement Durable (MEDD)

Alerting Systems must be: •Accurate (particularly with low false positive error) •Timely •Intuitive Automated •Low-bandwidth, low-hardware

Landsat Disturbance Index (DI₁) – simple and effective transformation of Landsat data that highlights forest loss over time

30 meter mapping of forest loss with 2004 technology

LEDAPS Project PI: Jeff Masek (NASA GSFC) NACP Data Cubes PI: Samuel Goward (UMD) Landsat-based records of North American forest disturbance %disturbed / yr

>2.0

The Disturbance Index compares the reflectance of each pixel to the average condition of nearby forests, expressing it in standard deviations above (toward ground) or below (toward really dark forest) the mean

The Disturbance Index compares the reflectance of each pixel to the average condition of nearby forests, expressing it in standard deviations above (toward ground) or below (toward really dark forest) the mean

Motivation for using multiple sensors in one of the world's cloudiest places

Multi-Sensor Disturbance Index

Sentinel-1 (12/21/2019)

Planet (10/26/2019)

1. Reflectance or backscatter data

Landsat (3/1/2020)

Sentinel-2 (12/12/2019)

Normalizing by forest population with similar seasonal characteristics reduces seasonal effects

Sentinel-1 VH 10/4/2020

Stretch: Red -> Yellow -> Green

Planet Mosaic 12/2020

Planet Mosaic 11/2021

Including timeliness in accuracy assessment

Case Study

- •2019-2020
- 6 configurations of input data
- Humid tropical forests
- Stratified random sample (n=960) with precise change date attribution

We're setting up five 2-year demonstration window in protected areas of varying cloudiness

> Using Planet quota donated by FAO

Marojejy National Park

One of the world's most distinctive conservation areas due to its diverse range of elevations and ecosystems

Masoala National Park

The largest protect area in Madagascar and is known for its exceptional biodiversity.

Ankeniheny Zahamena Corridor

A vital lifeline connecting fragmented forests of critical ecological importance.

Befotaka Midongy National Park

Madagascar's second largest rainforest is renown for its endemic plant and animal species

Andohahela National Park

A lemur's paradise with both rainforest, montane forest, and spiny desert ecosystems.

Google Earth Engine Q Search places and datasets...

Forest Disturbance Alerts (Beta)

Map Data: Daily Forest Disturbance Alerts Algorithm: Disturbance Index Alert System (DIAS) Inputs: Landsat, Sentinel-2, Planet, and Sentinel-1 Updated: April 11, 2023

Alert Confidence

Low

Ancillary Layers

- Protected Areas
- Study Areas

Filter by Alert Date:

Start:							End:								
9 30	Oct 2	3	4	5	6	3	4	5	6	7	8	9	10		
	111												111		
-	•														
Oct 1	1, 2022					Ap	or 10	0, 20	023						
10	10 / 01 / 2022 📛						04 / 10 / 2023 📛								

Disturbance Detection Dates Click on the map Low Confidence: 2022-3-1

High Confidence: 2022-3-7

hoard shortcute Imageny @2023 TerraMetrice Terms of Ilea

Google Earth Engine Q Search places and datasets...

Forest Disturbance Alerts (Beta)

Map Data: Daily Forest Disturbance Alerts Algorithm: Disturbance Index Alert System (DIAS) Inputs: Landsat, Sentinel-2, Planet, and Sentinel-1 Updated: April 11, 2023

Alert Confidence

Filter by Alert Date:

Start:							End:								
9 30	Oct 2	3	4	5	6	3	4	5	6	7	8	9	10		
-					►		l								
Oct 1, 2022						Apr 10, 2023									
10 / 01 / 2022 🛗						04 / 10 / 2023 苗									

Disturbance Detection Dates

Click on the map

Low Confidence: 2022-3-1

High Confidence: 2022-3-7

Keyboard shortcuts Imagery @2023_CNES / Airbus Landsat / Copernicus Mayar Technologies Terms of Use

Disturbance Index Alerts

Q Search places

Earth Engine Apps

Google Earth Engine Q Search places and datasets...

2023

Even in this small area, all 3 sensors were important in detecting change as soon as possible