

Landsat Next

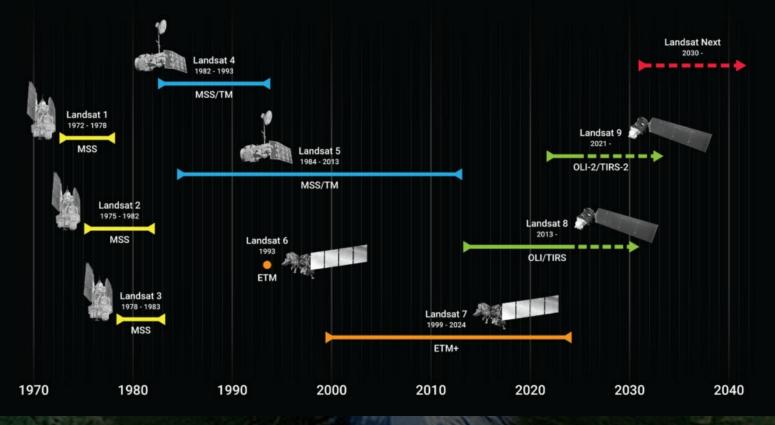
Extending the Program of Record with a NEW Constellation Architecture and 2-3x the temporal, spatial, and spectral resolution!

Bruce Cook, NASA Project Scientist Thomas Holmes, NASA Deputy Project Scientist Goddard Space Flight Center, Greenbelt, MD

Chris Crawford, USGS Project Scientist USGS Earth Resources Observation and Science (EROS) Center, SD

Landsat Next

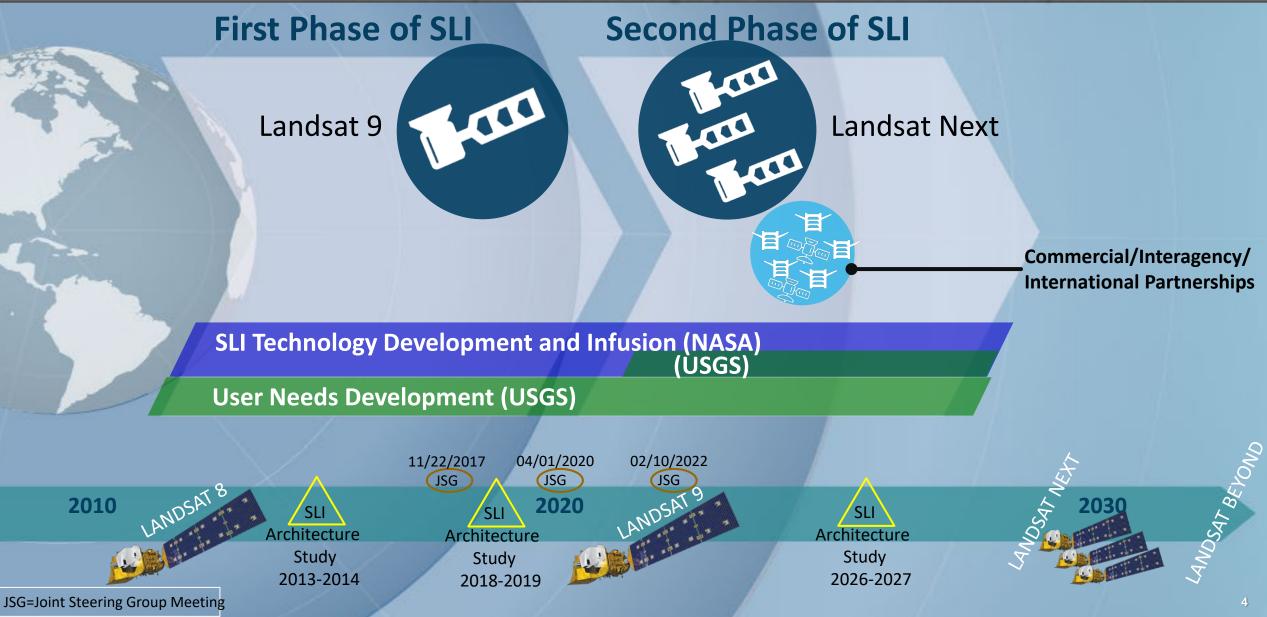
Development under the Sustainable Land Imaging (SLI) Program


U.S. Government Pre-decisional – For Internal Government Use Only

Landsat and the Sustainable Land Imaging Program (SLI)

The SLI partnership between DOI/USGS and NASA ensures sustained access to highquality, global, land-imaging measurements compatible with the existing 50-year Landsat record for research and operational users.

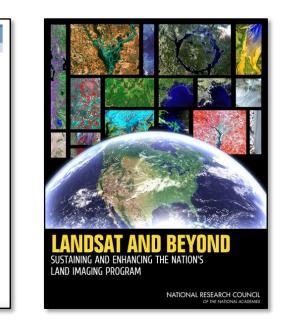
- NASA responsible for developing the space segment, launch and on-orbit check-out
- DOI/USGS responsible for developing the ground segment, flight and ground system operations


BUILDING ON THE LANDSAT LEGACY

Multi-Decadal, Sustainable Land Imaging Program

Partnership between DOI/USGS and NASA to ensure sustained access to high-quality, global, land-imaging measurements compatible with the existing 50-year Landsat record for research and operational users

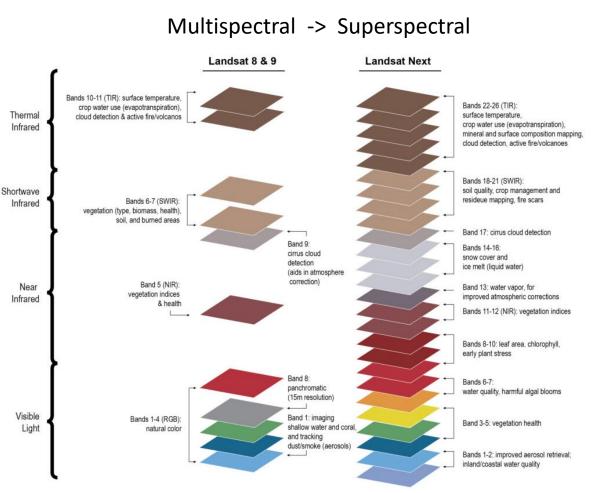
LNext **Origin of Mission Science Requirements** Landsat Next


Landsat Next Requirements reflect user priorities for land monitoring, as reflected in key documents

- USGS User Needs Survey of Federal Agencies (Wu et al., 2019)
- USGS Landsat Advisory Group (LAG) "Recommendations for Possible Future US Global Land Data Collection ۲ Missions Beyond Landsat 9" (2018)
- National Research Council "Landsat and Beyond" (2013)
- Recommendations from the NASA/USGS Landsat Science Team
- Feedback from Landsat Next Request for Information (RFI, Fall 2020) •

LANDSAT 9

Landsat Advisory Group


User need surveys provided a clear set of priorities to meet emerging needs and achieve breakthrough science:

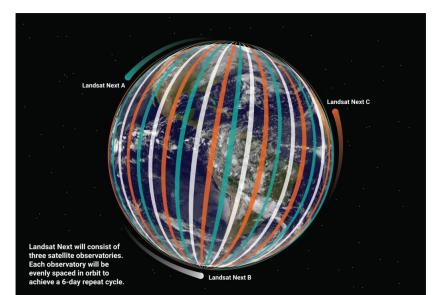
Improved Revisit Frequency. Dynamic phenomena (e.g., crop health & productivity, water quality, snow/ice state, wildfire) require ~weekly clear views.

Higher Spatial Resolution. Experience with Sentinel-2 has underscored importance of 10-meter data for monitoring small agricultural fields, forest disturbance, urbanization, and other observable features.

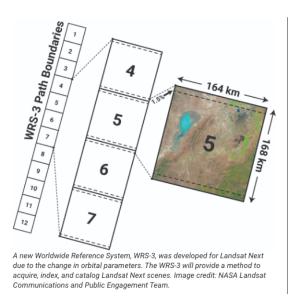
Additional spectral bands. Specific VSWIR and TIR bands support emerging applications in water quality, snow/ice dynamics, agricultural and soil management, and geological classification.

Maintaining radiometric quality established by Landsat 8/9

Landsat Next will provide more than twice as many spectral bands, with resolution improved by a factor of 2, and with the repeat coverage of Landsats 8 and 9, *combined*



Landsat Next


Mission Overview and Current Status

Landsat Next – Mission Overview

and a martine

WRS-3 PARAMETER	VALUE	
Equatorial Altitude	653 km	
Inclination	97.9835 degrees	
Mean Local Time (Descending Node)	10:10 am ± 5 minutes	
Number of Paths	265	
Number of Rows	248	
Repeat Cycle	18 days	
Descending Node Row	60	
Longitude of Path 001, Row 060	-65.2 degrees (65.2 W)	
Swath Width	164 km	
Along-Track Scene Length	168 km	
Scene Size	164 km x 168 km	

QUICK FACTS

- Mission architecture: Identical triplet satellite observatories
- Mission Category: 2
- Mission Class: B
- Number of spectral bands: 26
- Spatial resolution: 10-20 meters (VSWIR), 60 meters (atmospheric/TIR)
- Orbit: Sun-synchronous at 653 km (406 miles)
- Orbital inclination: 98 degrees
- Observatory orbital separation: 120 Degrees
- Mean equatorial crossing time: 10:10 am ± 5 minutes
- Single observatory repeat interval: 18 days
- Triplet constellation repeat interval: 6 days
- Global cataloging grid system: WRS-3
- Scene size: 164 km (102 miles) x 168 km (104 miles)
- Half angle field of view: 7.2 degrees
- Expected launch date: Late 2030
- Mission design life: 5 years

- Identical triplet satellites with VSWIR+TIR instrument suite, temporally disaggregated to improve revisit
- New Worldwide Reference System (WRS-3) developed for lower orbit (653 km) and reduced swath (164 km)
- Satisfies emerging Landsat user needs with maximum resiliency (6 d with 3 observatories, 9 d with 2 observatories)
- Complies with Landsat heritage science requirements

LNext LNext Science Requirements: Spectral, Spatial

Landsat Next

	Band Name	Ground Sample Distance (m)	Center wavelength (nm)	Band width (nm)	Rationale	Landsat Next's
1	Violet	60	412	20	Improved aerosol retrieval; CDOM from inland/coastal water	
2	Coastal Aerosol	20	443	20	Landsat	<u>NEW Capabilities!</u>
3	Blue	10	490	65	Landsat]
1	Green	10	560	35	Landsat	Fine-Res (10m) VSWIR
5	Yellow	20	600	30	Leaf chlorosis, vegetation stress and mapping	
6	Orange	20	620	20	Phycocyanin detection for Harmful Algal Blooms	
7	Red 1	20	650	20	Phycocyanin, chlorophyll	Vegetation attributes
8	Red 2	10	665	30	Landsat	
9	Red Edge 1	20	705	15	LAI, Chlorophyll, plant stress (S2)	Atmospheric correction
10	Red Edge 2	20	740	15	LAI, Chlorophyll, plant stress(S2)	Atmospheric correction
11	NIR_Broad	10	842	115	10m NDVI (S2)	· · · · · · · · · · · · · · · · · · ·
12	NIR1	20	865	20	Continuity (note-S2 narrower than L8)	Water Quality / Algae
13	Water vapor	60	945	20	Improved atmospheric correction for LST, SR (S2)	
14	Liquid Water	20	985	20	Liquid water, water surface state	
15	Snow/Ice 1	20	1035	20	Snow grain size for water resources	Snow/Ice Dynamics
16	Snow/Ice 2	20	1090	20	Ice absorption, snow grain size	
17	Cirrus	60	1375	30	Landsat	
18	SWIR 1	10	1610	90	Landsat	Mineral Mapping
19	SWIR 2a	20	2038	25	Subdivided for cellulose/crop residue measurement (Landsat)	
20	SWIR 2b	20	2108	40	Subdivided for cellulose/crop residue measurement (Landsat)	
21	SWIR 2c	20	2211	40	Subdivided for cellulose/crop residue measurement (Landsat)	
22	TIR 1	60	8300	250	Mineral and surface composition mapping (ASTER)	
23	TIR 2	60	8600	350	Emissivity separation, volcanos (SO2) (MODIS/ASTER)	
24	TIR 3	60	9100	350	Mineral and surface composition mapping (ASTER)	
25	TIR 4	60	11300	550	Surface temperature (Landsat), carbonates	
26	TIR 5	60	12000	550	Surface temperature, snow grain size (Landsat)	

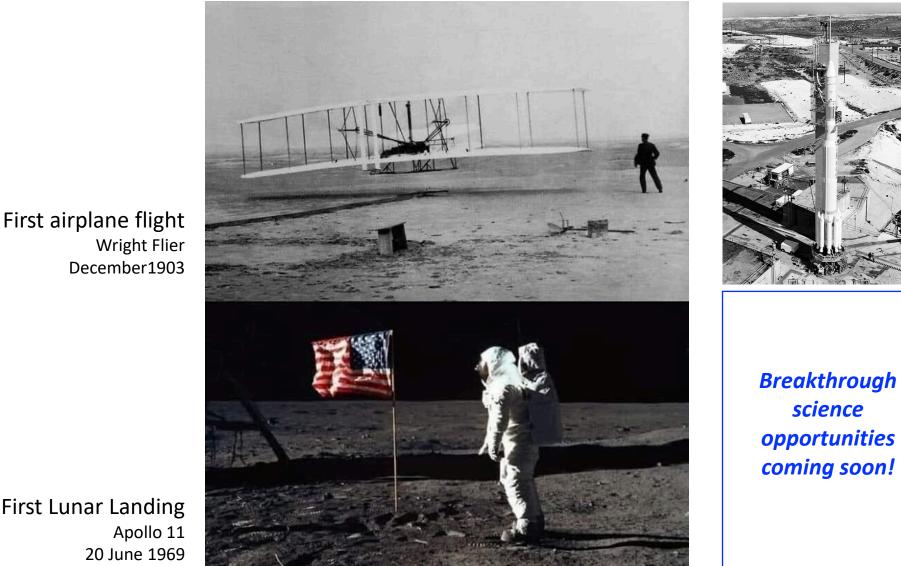
Virtual Constellation of Diurnal TIR Measurements

- When the LSTM constellation is in place, each 10am Landsat observation (L8, L9 and LNext) will have a matching mid-day observation
- About half of these matches will be with Nadir +-10 degrees observations
- With Landsat-Next, ALL these TIR observations will have
 - 60 m GSD or better
 - 4 or more thermal bands

LNext Current and Future Work

Mission Architecture concept definition is complete, and Landsat Next is officially in Phase A!

Pre-Phase A - user surveys; architectural studies to determine science mission requirements


Phase A – science flow down to hardware requirements; architecture credibility and refinement

- Phase B preliminary design and technology completion
- Phase C final design and fabrication
- Phase D system assembly, integration/testing, and launch readiness;
- Phase E starts after on-orbit operational checkout and ends at the mission's operational end.

Ongoing Phase A Work:

- Landsat Next Instrument Suite (LandIS) is on the Mission's critical path.
 - Proposals are being evaluated, and NASA expects to have a vendor on contract by summer 2024.
- NASA Spacecraft Request for Proposals (RFP) is planned to be distributed during Fall 2024, and the project expects to have a vedor on contract by summer 2025.
- USGS Ground System studies to assess ground stations, data compression, constellation mission operations.

There are 60-70 Years Between These Pictures

First Landsat ERTS-A / Landsat 1 Launched 23 July 1972

Tenth Landsat

LRD Late-2030 (+58 years)

Landsat Next

First Lunar Landing Apollo 11 20 June 1969

Backup

Must See Videos – Current Landsat Mission Status

Landsat 8/9

Landsat 2023: A Year in Review

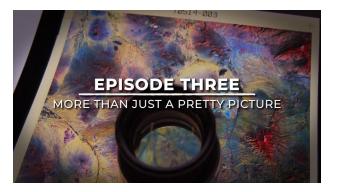
ExtraDimensional - The Fusion of Landsat & GEDI Data

Landsat Next

Landsat's Next Chapter

Landsat Next Defined

Must See Videos – Landsat's 50+ Year History


Continuing the Legacy Series

E01: Getting Off the Ground

E02: Designing for the Future

E03: More than Just a Pretty Picture

E04: Plays Well With Others

A Trip Through Time with Landsat 9

Landsat 8: A Decade of Service

Virginia Norwood and the Little Scanner that Could

Must See Videos – Selected Landsat Applications

Landsat's Role in Monitoring Water Quality

Tracking Three Decades of Dramatic Glacial Lake Growth

48 Years of Alaska Glaciers

Landsat Croplands Data Overview

Landsat: Farming Data from Space

25 Years of Forest Dynamics

NASA Goddard Applied Sciences - 12 February 2024

Tracking Amazon Deforestation

Mapping Ecosystems to Understand Their Value

NASA Joins Jane Goodall to Conserve Chimp Habitats

LANDSAT APPLICATIONS (L8) https://landsat.gsfc.nasa.gov

FIRE

Burning Wildlands and a Burning Need for Landsat

LAND USE AND LAND COVER CHANGE Effective Tools for Cleaning our Waterways

WATER

Mapping Water Use

FOOD

Monitoring Crops from Space: A Decades-Long Partnership

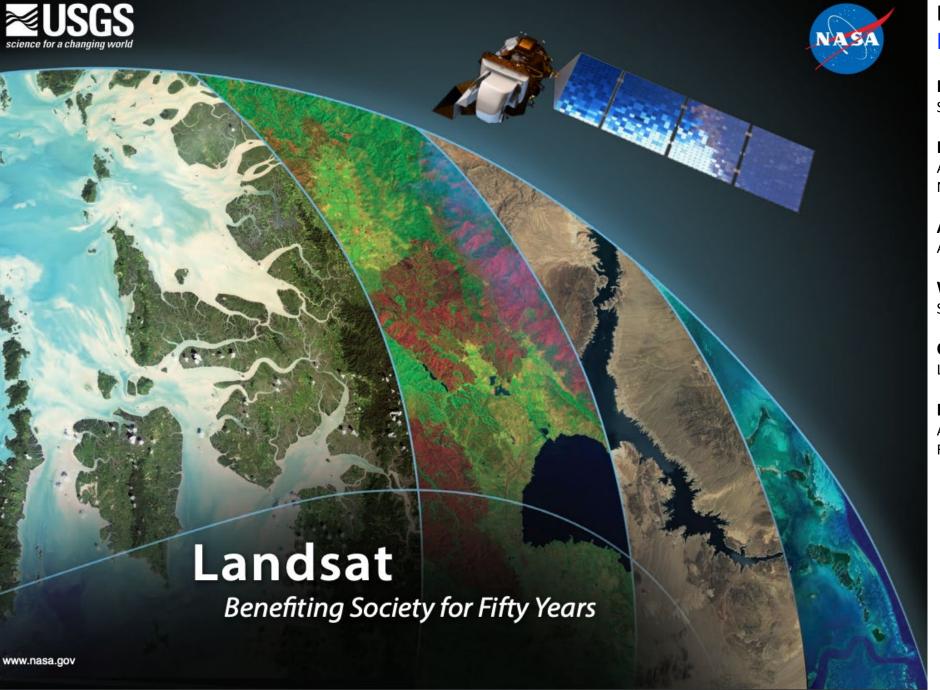
ECOSYSTEMS Mapping the Western Pine Beetle

FORESTS Counting the World's Trees

DISASTERS Mapping Disaster: A Global Community Helps from Space

BATHYMETRY Avoiding Rock Bottom: How Landsat Aids Nautical Charting

Landsat Continuing to Improve Everyday Life



LANDSAT APPLICATIONS (L9) https://landsat.gsfc.nasa.gov

FOREST MANAGEMENT Spotting Deforestation with Landsat

BATHYMETRY Avoiding Rock Bottom: How Landsat Aids Nautical Charting

AGRICULTURE Addressing the Water Consumption Riddle

WATER Satellites on Toxic Algae Patrol

CLIMATE Landsat Provides Global View of Speed of Ice

FIRE

After the Fire: Landsat Helps Map the Way Forward