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Nimrod Carmon, JPL

VSWIR-TIR Physics-Informed Data Fusion for Wildfire Analysis

Abstract: The WILDFUSE project integrates data from the Ecosystem Spaceborne Thermal Radiometer Experiment on Space Station
(ECOSTRESS) and the Earth Surface Mineral Dust Source Investigation (EMIT) to refine Land Surface Temperature (LST) estimations through a
physics-based fusion of Visible to ShortWave Infrared (VSWIR) and Thermal Infrared (TIR) measurements. This methodology enhances the
accuracy of ECOSTRESS’s Temperature-Emissivity Separation (TES) by integrating water vapor estimates and prior LST derived from EMIT.

VSWIR
The EMIT sensor captures the solar radiation reflected
from the Earth’s surface and atmosphere across 285
spectral bands in the VSWIR range of 350-2500 nm.
Within this spectral domain, interactions such as
absorption, scattering, and reflectance occur with
atmospheric gases and particles, as well as with surface
materials. Employing atmospheric correction techniques
enables the deciphering of spectral surface signatures and
atmospheric conditions for each pixel in the image.

TIR Beosr TR
ECOSTRESS is a multispectral : v
TIR (7-12 micron) sensor. It
captures radiation originating
at Earth’s surface, modulated
by the surface’s temperature
and emissivity. TES algorithms
are used to decouple the two L W
parameters, retrieving LST and Fig 1: EMIT and ECOSTRESS

surface emissivity LST is then simultaneous view from the ISS
used to assess evapotranspiration (ET) and

evapotranspiration stress index (ESI), a level 2 product
for ECOSTRESS.
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WILDFUSE
Conceptual Framework Data Fusion Methodology
VSWIR spectrometers such as EMIT can estimate atmospheric 7
conditions, namely the water vapor concentration, and surface iE" SECOSTRESS
reflectance from the radiance measurement using atmospheric
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correction routines. In contrast, multispectral TIR instruments must V$OW/LR
rely on auxiliary data and models to determines key unknown Radiance

Atmospheric
Correction
parameters required for the TES, namely the water vapor columnar g ;i )

concentration. Even then, separating temperature from emissivity is ]
an ill-posed problem. In this project we are focusing on fusing EMIT ! ! :
data to support TES in two ways. First, we will estimate water vapor
and use those estimate to inform TES. Second, we are developing a
novel approach that estimates energy absorption using EMIT, and in
combination with land cover classification, estimate a prior

. . . . . .pe L,Z Land Surface
distribution LST. These two advancements will help significantly Algorithms Temprature

constrain and improve TES and downstream products, namely ET and

ESI. Evapotranspiration,
Pre- and Post- Wildfire Analysis
We will calculate a set of plant traits related to wildfire risk (pre-fire) and forest rehabilitation (post-fire) using
both EMIT and the improved ECOSTRESS LST product. From EMIT we will map functional properties such as
Chlorophyll, Leaf Area Index (LAI), Brown Pigments, and more, based on PROSAIL top of canopy reflectance
model. From ECOSTRESS we will incorporate ESI, which will be improved compared to the standard product
due to the reduction of errors following our data fusion approach. @
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Glynn Hulley

Problem Statement:
» Rising extreme heat exposure from a combination of
climate warming and urbanization threatens growing
urban settlements in India.

» There is an urgent need to characterize where urban
growth and the emergence of extreme heat intersects
for rapidly growing cities.

» Understanding these interactions will aid cities in pin-
pointing areas requiring tailored adaptation measures to
mitigate heat risk.

LST acquired over India
by Terra MODIS at 10:30 am
on April 22, 2822
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Objective 1: Produce mean annual VIIRS Land Surface Temperature summertime
composites over the six Indian cities from 2013-2024 using VIIRS 375-m data.

Objective 2: Identify regions of rapid urban change using Landsat Local Climate Zone
(LCZ) maps and VIIRS LST time-series composites from Obj. 1

Objective 3: Quantify connections between LCLU properties and LST for the regions
of rapid change identified in Obj. 2 using ECOSTRESS Land Surface Temperature

Project Team:

Dr. Anamika Shreevastava, California Institute of Technology

Dr. Vimal Mishra of Indian Institute of Technology, Gandhinagar
Dr. Ronita Bardhan of University of Cambridge, UK

LCZ type ??

6. Open low-rise 7. Lightweight low-rise
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Quantifying connections between urban LCLUC and extreme heat in
rapidly growing Indian cities
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Urbanization and Fire Risk at the Global Wildland-Urban

Shijuan Chen .
Interface: A Multi-sensor Study of Past and Future Trends

Goals and plans:

. |ldentify hotspots of historical urbanization within the global wildland- u?m'terface (GWUI) and
analyze the intensity of urbanization. .

. Assess forest degradation within urbanization hotsgxts in' the WUI.

. Investigate the effects of urbanization and forest degradatlon on land surface temperature within
urbanization hotspots in the WUI. i

* - EBxplore the effects of changes in land surface temperature on fire hazards.

“oi Prggét future WUI in the urbanization hotspots and identify areas with potential high risk.

Karen C. Seto (PI) Shijuan Chen(Co-Pl)  Volker Radeloff (Co-l) Franz Schug (Collaborator) Jennifer Balch(Co-I)
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Detecting and Mapping War-Induced Damage to Agricultural Fields in Ukraine using Multi-Modal Remote Sensing Data

S. Skakun', I. Becker-Reshef', E. Duncan', N. Kussul?3, A. Shelestov?3, M. Adegbenro’, C. Abys'

1University of Maryland, College Park, MD; 2National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Kyiv, Ukraine; 3Space Research Institute of National Academy of Sciences of Ukraine and State Space Agency of Ukraine

Motivation
The Russian invasion of Ukraine
in 2022 led to a widespread
distribution of Unexploded
Ordnances (UXO) from
artillery/rocket shelling

Large demand for detection of
craters for future humanitarian
demining efforts, remote sensing
only way to conduct this safely
and at large-scale

Key Expected OQutcomes
Classification model for artillery
crater detection

Multi-Modal Data Fusion with
the latest in remote sensing data

Develop new nomenclature
system and methods to identify
and map them within the context of
damaged agricultural lands

Shelling in mid-June detected by Sentinel-2 led to
healthy vegetation in farm field being abandoned

(b) 2022-05-08 ON20612 () 20220707 (8) 20220717

Front-Lines
Occupied by Russin
EOX::Maps - Sentinel-2 cloudless

Multi-modal data fusion for crater detection

onetsk Oblast

oL o 10 um
n)‘m Maxar -

A
Amvrosiivka

Svystus
Vystuny |

Pervomaiske <,

39.000

Stepaniivka ‘

“>Marynivka
B SO

\)\ Oleksiivke

Luhansk Oblast

Training Image Boundaries
Points of Interest
[ Ukraine National Boundary

["] Ukraine Sub-national Boundary
ESRI Satellite (ArcGIS/World_Imagery)

Validation_Area




Jonathan Wang, University of Utah

Increased heat waves and drought are driving
forest mortality events in western US forests,

threatening carbon, water, and fire risk

Are spatial anomalies of LST a reliable signal
of forest mortality? We will improve detection
and mappingforest mortality using Landsat
Collection 2 LST and SR

il Multiscale monitoring of drought-induced forest mortality by detecting spatial
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Current aircraft surveys are coarse, limiting
understanding of trends, spatial patterns,
and environmental feedbacks

anomalies in land surface temperature and infrared reflectance

Water stress induces stomatal closure
or defoliation, reducing transpirational cooling
and raising land surface temperatures (LST)

[6)]

EN

(&}

N

ALand surface temperature (°C)

O 1 1 1 L 1 4 1 " 1 1
1994 1996 1998 2000 2002 2004 2006 2008

2010 2012

eer Huang and Anderegg, 2014

Change in Norm.
Diff. Moisture Index

Change in
LST anomaly

\ M2k

M 2K

' Sl Change in Norm. -
Diff. Moisture Index

Change in
LST anomaly
M2k

W 2K

500 1,000 m

Expected Outcomes:

1.

Reference data of individual tree status from
high res imagery, airborne lidar, and drones
in focus areas

30 m map of annual percent forest mortality
from 1984-2024 using LST and SR

Analyze drivers of vulnerability (e.g. height,
density, elevation) across multiple forest
types and ecoregions

Y Potential Focus Area

Forest Types
B9 Pinyon Juniper
B Douglas-Fir
Bl Ponderosa Pine
. Fir/Spruce/Hemlock
"# 4 I Lodgepole Pine
Hemlock/Sitka Spruce
| W California Mixed Conifer
~| B Aspen/Birch
[ Western Oak
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Michael Wimberly, Chengbin Deng,

Chenghao Wang, Shomen Mukherjee

Multi-Source, Multi-Resolution Imaging of Urban Land Cover to Improve
Predictions of Human Heat Exposures

Objective 1: Develop time series maps of local climate zones
and urban green and blue spaces using multi-source, multi-
resolution remote sensing data.
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Objective 2: Map daily and seasonal patterns of urban land
surface temperatures by fusing high spatial resolution and high

temporal resolution sources of thermal data.
Morning (6:00-12:00) Afternoon (12:00-18:00) Evening (18:00-24:00)
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For more information contact: Michael C. Wimberly (mcwimberly@ou.edu), Chengbin Deng
(cdeng@ou.edu), Chenghao Wang (chenghao.wang@ou.edu)



mailto:mcwimberly@ou.edu
mailto:cdeng@ou.edu

McKenzie Johnson (PI), Bin Peng (Co-Pl) Land Cover Land Use Change, Conflict, and Peacebuilding in Colombia

S i University of lllinois Urbana-Champaign
T AND LAND YT
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2. Participatory Mapping in 3 Veredas in Montes de Maria

Objective 1: Identify
Coca crops expanding into National Natural Parks in Colombia
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Mapping Arctic Disturbances
A Multi-Sensor Remote Sensing Analysis of Oil and Gas Impacts

Dan Sousa
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Identified disturbances

Characterized spectral diversity

Develop a mixture modeling approach fo Quantified effect of spatial and spectral resolution

monitor and track sub-pixel scale LCLUC
changes and disturbance associated with oil and |
gas exploration in Prudhoe Bay, Alaska Tem P OTra

Implications for SBG and other future spaceborne imaging spectroscopy missions
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Sean Woznicki Water Scarcity in the Serbian Danube: Agricultural Land Use Change and Irrigation

o The Danube River Basin is experiencing warmer growing seasons and irregular precipitation patterns,
leading to more frequent droughts and decreased water availability.

o Crop rotations in Serbia are complex, and irrigation is sparse. As summers become hotter and drier...

o Will crop choices change? Will irrigation adoption increase? How will this affect the regional water balance?

Multi-year crop classification Hydrological modeling Agricultural Land use change
LSTM and domain adaptation Historical and future water balance Crop choice + irrigation adoption
(@) RCP4.5 Spring (b) RCP4.5 Summer
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Increasing crop water stress (2041-2070)



Yufang Jin & Dan Dixon Multi-source Fine-Scale WUI Fuel Structure Characterization

Univ. of California, Davis with Spatial and Temporal Deep Learning: Canopy Height

Monitoring fuel structure is critical for assessing WUI fire o0 T e g o tOTh CORUITNS ), Central Foothils / Mitns  _Souther Coast / Mitns
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PI: Chris Neigh Deep Learning Approaches for Monitoring Land Cover Land Use Trends in Senegal

NASA-GSFC with VHR Optical Imagery and Data Fusion

“R AND L

Background and Objectives Methods and Data

West Africa is a hotspot of land cover change that is not
sufficiently documented due to extreme changes between wet

and dry seasons and the inability of moderate-resolution
sensors to detect sub-hectare changes. We look to overcome
these limitations using a multi-sensor data fusion approach,

0 ﬂ pss oo e
Transfer weights (TLQ)
- WorldView data availability for
Transfer Region-specific / _Train UnNet Predict Region-specific X
Learning [ tanse / testset mapping change across two

time periods for Senegal study
1. Quantify changes in the extent and intensity of irrigated rice and dryland agriculture. sites

Overview of CNN scaling-up experimentation workflow
2. Test CNNs on VHR data for extracting croplands and individual trees at regional scales.
3. Assess agroforestry and reforestation in degraded fields using time-series SAR and VHR.

utilizing Deep Learning Convolutional Neural Networks (CNNs)
with thousands of 2 m resolution Worldview-2,-3 images, SAR
(Sentinel-1), and HLS time series data.
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Overall | 2010-2015 | 2016-2021| ETZ | CAS

Co-Investigators Results
. Konrad Wessels: George Mason University N' ,
. Mark Carroll: NASA Goddard Space Flight Center f\“MI\”oﬁ Sl —
. Nathan Thomas: Edge Hill University 1 @;ﬂ memas o
. Molly Brown: University of Maryland College Park ReRer UNivERSITY >

. ’Irlnstilt:i: J ZZS
Collaborators ][[E.g hrdeas’  ZUSGS e ’
. *Margaret Wooten: NASA Goddard Space Flight Center/SSAI . R, A A =R N o, SRS . .
»  Jordan Caraballo-Vega: NASA Goddard Space Flight Center 7 =7 & : CRaA B Ol P £ wame o ow
. Min Tri Le: George Mason University @y _@ 'j!’ ' LA ; gl | ¥

Cent Suivi Ecologique Z A ¢ 3

A man stands with his donkey
and  recently  harvested
lumber from the site shown on
the image to the right.

. William Wagner: NASA Goddard Space Flight Center/SSAI
. Aziz Diouf: Centre de Suivi Ecologique
. Modou Mbaye: Institut Sénégalais de Recherches Agricoles

Accuracy: | 84.1% | 826% 851% | 737% | 86.1%
Fi-Score: | 838% | 82.0% 85.0% | 735% | 86.0%
Precision: | 836% | 81.7% 85.0% | 74.3% | 859%

. . . Recall: 84.1% | 826% 85.1% | 737% | 86.1%
s Babacar Ndaou: Centre de Suivi Ecologique October 16, 2023. ?No(;lquew dml]agetryt ahnd corrchsplond!ng Latest s f ternal
- andcover model outputs show a small clearing atest results from externa
*  Woubet Alemu: NASA GSFC/University of Maryland College Park of a forested area in the Casamance between cross-validation of landcover
. Pete Bunting: Aberystwyth University September 17 and October 31, 2023. © Maxar model outputs
. Gray Tappan: USGS 2023

. Renaud Mathieu: International Rice Research Institute




C i Cheryl Doughty Global Hotspots of Change in Mangrove Forests

AND LAN

Mangrove forests have lost between 35% and 50% of their extent over the last century. National Marc Simard (Pl), David Lagomasino, Kyle Cavanaugh, Lola Fatoyinbo, Nathan Thomas, Daniel Friess,
rates of loss reach 8% in some mangrove-holding countries. Yet, these estimates are highl Peter Bunting, Richard Lucas, Priscilla Baltezar, Abigail Barenblitt, Kinsey Blumenthal, Anthony

o g 4 : ’ ghly Campbell, Isamar Cortez, Cheryl Doughty, Adriana Parra Ruiz, Paulo Murillo-Sandoval, Atticus Stovall
uncertain due to a disparate collection of published data, with inconsistent methodologies, quality

and accuracy. Therefore there is a critical need for systematic and consistent estimates of historic A regional map of mangrove extent
and contemporary global mangrove land cover and land use change. for Myanmar, Thailand, & Cambodia F)Rakhine, Myanmar
h shows losses of 44% by 1996
- N . . * GMW Estimates
Mangrove degradation \5‘.1 . g’ £
and regeneration in o pa :
9 \} 0]

change hotspots
quantified with Landsat

from 1984 - 2020 - | I | I | I | I
: Fig. Losses and Gains in Marine Ecoregions (MEOW) ’ o ":?AVWW %ium ;:\{E(m.\ _r;’["‘? o b
Direct anthropogenic drivers identified with g g P e R
Very-High Resolution Imagery Mangrove baselines | | % ppee
— N . extended to the e,
e AN 1970’s with | 5

Landsat MSS reveal
nuanced changes in
global hotspots

@ Rakhine, Myanmar

8- Bangiok, Thaland

A Global Map of Mangrove Canopy Height

h g A Mangroves oo - — Published papers

s 3 ﬂ with a SPatlal Resolution of 12-meters Cover Change w if 1.Mo, Y., Simard, M. and Hall, J.W., 2023. Tropical cyclone risk to global mangrove ecosystems: potential

c - Y T . t . ] A — B future regional shifts. Frontiers in Ecology and the Environment, 21(6), pp.269-274.

S—~a rajectories n %” Baltezar, P., Murillo-Sandoval, P., Doughty, C., Lagomasino, D., Tieng, T., Cavanaugh, K., Simard, M. and

ol : ) 1 984_2020: The - L Fatoyinbo, T., 2023. A.Regfonal I\{Iap of Mangrove Extent for Myanmar, Thailand, and Cambodia Shows Losses

o= - \‘ of 44% by 1996. Frontiers in Marine Science, 10, p.1127720.

Qo n (] Gradual ” t Murillo-Sandoval, P.J., Fatoyinbo, L. and Simard, M., 2022. Mangroves cover change trajectories 1984-2020:
2 = : Decrease Of 2002 The gradual decrease of mangroves in Colombia. Frontiers in Marine Science, 9, p.892946.

= \E, o M . m f Castellanos-Galindo, G.A., Casella, E., Tavera, H., Zapata Padilla, L.A. and Simard, M., 2021. Structural

o S angroves in : — characteristics of the tallest mangrove forests of the American continent: a comparison of ground-based, drone
m o 0o colombia L ) ?;’ r and radar measurements. Frontiers in Forests and Global Change, 4, p.732468.

ke .E e Fos S —_— 6. Lagomasino, D., T. Fatoyinbo, S. Lee, E. Feliciano, C. Trettin, A. Shapiro, and M. M. Mangora. 2019.

‘l_-l o)) 7] Get the paper: 303 o3 g { Measuring mangrove carbon loss and gain in deltas. Environmental Research Letters 14:025002.
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Eric L Bullock!*, Sean P Using Daily Planet Imagery with the Sentinels and Landsat to

Healey! and Zhigiang Yang! Generate Deforestation Alerts

The Disturbance Index Alert System (DIAS) 2

/ 1. Sensor-agnostic \ {Simple data fusion am ﬂ Optimized for rapih /4 All input data are\

time series monitoring || change detection method disturbance detection used to flag change

52% of reference disturbances
“Other” @ detected in 10 days PlanetScope

(e.g., NISAR) 73%, 30 days DIAS | | 57%
QO | ;
c

Sentinel-2 PlanetScope
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1 US Forest Service Rocky Mountain Research Station (RMRS-FIA)
2 Bullock et al. [Manuscript in preparation]

* Contact: eric.bullock@usda.gov | NASA Grant 80HQTR21T0020 (PI: Healey)
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Adapting Maize Systems to Climate Change in Mexico
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Nicholas Cuba

Mapping the spectral, thermal, and fine-scale textural characteristics of croplands in Central

America and variation with rates of outmigration (2012-2018)

ABSTRACT: Migration from the Guatemala, El Salvador, and Honduras to the USA has
increased substantially in the last decade. As in many parts of the world, traditional and
common livelihoods based on agriculture have become less viable in these countries due
to factors such as extreme weather events, or climate change, changes in resource access,
and pollution. Earth Observation data, considered in conjunction with administrative and
survey information, can help to better understand the drivers of international immigration
as well as the counter-impacts to land systems after outflows of population and in-flows of
capital in the form of remittances.

\rObjective 1. Derive agricultural LCLUC metrics related to landscape

} composition and configuration, and evaluate their spatial and

I
}
} temporal differentiation in the NT in relation to outmigration |
— K

\rObjec_tiTle_Z_. Identif\?f_ac_tgrs that drive changes_t_o_eﬁher agrictﬁtar_al }
} LCLUC or outmigration within target communities and evaluate their}
} strength and significance I

robject v;73.75ca|e upidiri;er nform;t;rggdels of miél%tion-relat;aﬂ}
‘LLCLUC to predict and monitor ongoing changes to NT land systems |

MAPPING LOW INTENSITY, SMALLHOLDER AGRICULTURE

MIXED COVER AND SLOPED TERRAIN IN SMALLHOLDER CORN/
TIPICOS — EXAMPLES FROM ALL THREE COUNTRIES

High-resolution imagery (2022) show a patchwork of
managed land in an upland area of western Honduras
(Copan, inset).

Migration Rate (all
years' population)

[P}

[

Photos: Across the region, small-holder agriculture LC is
characterized by a mix of materials and vegetation types.

U.S. Customs and Border Patrol records the hometown of each
migrant apprehended at the U.S. Southern Border. These data are
aggregated at the departmental (left) municipio (right) scales and
normalized by estimates of population derived from remotely
sensed data (WorldPop) to show spatial variability in migration
rates.

TIR measurements from UAS suggest
that afternoon observations may be
useful for resolving crops, new-

CLIMATIC VARIABLES AND MIGRATION

Long term trends (1981-2018) in variables derived from data from UCSB’s Climate Hazards
Center(CHIRPS pentad, CHIRTS daily) varied significantly with migration rate at the Departmental
scale, although there are significant spatial and national differences. Variables were derived from
seasonal harmonic, and threshold-based deterministic models of precipitation and temperature
Shown below are maps of per-pixel Sen slopes for each variable over the total period (1981-2018
for precipitation data, 1983-2016 for temperature).
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BELOW: Smallholders ofter grow sugarcane on annual cycles that allow for
straightforward classification on the basis of high VI throughout the dry season.

El Bario, Suchitoto, El Salvador

A vyear 2016 random forest classification of Sentinel-2
spectral, derived temporal, and other topographical
data captures this land cover relatively well. This
output relied on median spectral and phenological
inputs from around the growing/rainy season.

Il Forest [T Crops [ Grass

plantings, and pasture (Camotan,

Comparable products such as ESA WorldCover (left) and WRI Dynamic World
Guatemala)

(right), both 2020 classify these crops as grass and miss many patches. There
are pastures and areas of grass in this region, but poor infrastructure and
capital limit its extent.

Crops:
mean: 355 C

5d.:06
New planting;
mean: 41.0C N=50 points
5d.:06 selected
within each
pasture. cover type
mean: 37.7. ¢ Image height =
d.:05 120m

RIGHT: This relatively large plot
(~400m square) near Copan,
Honduras, is municipally owned
with small portions (sub hectare)
allotted to individuals. This
orthoimage, from data collected
3-4 weeks after planting, shows
some variation in crop growth and
abundant visible soil

W 88,3892974 LONG).
At So3 081 |

2221055 Ak

LEFT: Plot size on the order of
60x100m are typical in El Bario,
Suchitoto, El Salvador.
Infrastructure and rainfall allow
even small producers to grow
sugarcane.

BELOW: Within the wet season (June to August), and early-/mid- dry season multispectral imagery
can be helpful to discriminate categories. But clouds are abundant during these times and changes
in planting times and water availability can confound these efforts.

Camotan, Guatemala (irrigated) Copan, Honduras (upland, rainfed)

SMALLHOLDER AGRICULTURE ALONGSIDE EXTENSIVE SUGARCANE
TRANSITION FROM CORN/TIPICOS TO SUGAR CANE — USULUTAN, EL SALVADOR PR o | meosme

dark gree!
= mangroves

Averaged across
all days, €

of precipitation

UN-AUG, mm

LEFT: In eastern El Salvador there has been a
decades-long pattern of transition away from
cultivation of corn/beans/squash and cotton to
sugar cane production. The conditions of labor
and local environmental impacts of sugar cane o an
cultivation have been cited as reasons for
migration.

ABOVE: Derivation of a relative abundance index that describes the rate of
sugarcane AND large-area bare soil as a potion of all croplands correlates
significantly with outmigration rate at the municipio scale in the region.
(N=36 municipios from the departments Usulutan, San Miguel and San
Vicente)

LEFT: Random forest classifications were produced
for year 2020 using median composite Sentinel-2
reflectance from both the dry (JAN-MAR) and the
wet (JUN-AUG) season, along with slope and
elevation data.

Output is shown at left, alongside a 2022
basemap. Sugarcane production characterized by
irrigation and a growing season often in excess of
12 months. As a consequence, fields may exhibit
high greenness during the dry season or bare soil
during the wet season if recently harvested. Patch
size of bare soil was used to threshold outputs and
attribute large patches to sugarcane production
land use.

blue = agua
= cafia purple = soil
rest




Quantifying the impacts of forest biomass and productivity change on future Land cover and

Meng Luo land use change projections

Motivation and research questions

« Land cover and land use change (LCLUC) is one key interface between human and Earth systems, and has crucial impacts on
carbon and water cycles, and biodiversity

» Despite its importance, the changes in forest biomass and productivity are commonly ignored in the future LCLUC projections.

«  Both climate change and forest management practice can significantly impact forest productivity.

 What is the impact of climate-induced and forest management-induced changes in forest productivity on LCLUC across the five
Shared Socioeconomic Pathways (SSPs) throughout the 21st century?

Current progress

o Develop and constrain ED2.2 emulator IOCC »« AR6 SSP-RCP Scenarios
 Forest management induced-forest productivity can significantly

with satellite data

influence LCLUC, especially for the managed forest and natural lands.
SSP1 SSP2 SSP3 SSP4 SSP5
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Fig. 2 Global LCLUC under SSP1-SSP5 from 2015 to 2100. (a-e) global LCLUC without
. o ) . considering forest management change induced forest productivity change. (fj) The relative
Fig. 1 Schematic diagram of the workflow of this project. difference of global LCLUC between with and without consideration forest management
change induced forest productivity change.

-=--  Uncertainty flow @ Objectives



Qu Zhou, Kaiyu Guan

Emails: quzhou2@illinois.edu, kaiyug@illinois.edu

Quantifying field-level cover cropping in the U.S. Midwest using multi-source satellite data

INTRODUCTION

Cover crops can significantly benefit soil conservation,
nutrient management, weed control, climate change
adaptation, and agroecosystem mitigation. Huge efforts
have been made at both federal and state governments to
provide financial and technical support to farmers for cover
cropping in the U.S. Midwest.

However, knowledge of cover cropping variations and
impacts of government policies remains very limited.
Accurate and efficient monitoring of cover cropping is
essential for understanding cover cropping adoption status,
accessing cover cropping benefits, and evaluating the
outcomes of cover cropping conservation programs.

While field-level cover cropping information is typically
obtained from field investigations, which are time-
consuming, labor-intensive, and costly. Remote sensing has
the potential to provide timely and cost-effective solutions
for large-scale and field-level cover cropping detection but
remains at the early stages.

OBJECTIVE

To fill the gaps in using remote sensing to quantify cover
crop adoption at field scales across large spatial and
temporal extents, this project proposes to integrate
knowledge in remote sensing, large-scale computation, plant
phenology, and artificial intelligence, for the development of
cover crop quantification framework.

Modeling cover crop feature thresholds
Cover crop growth varies dynamically across different
regions and periods, which leads to dynamic cover crop
features. The environmental factors are involved to predict
the cover crop feature thresholds (cT):

cT = F(environmental variables),d € T; (3)
The method can consider the influence of environmental
factors on the cover crop mapping, which enables the
capacity of the invention to be applied at large-scale and
long-term with relatively high accuracy.

) .
' Com and soybean fraction (%) in the U.S. Midwest | ' NDVI time series in a satellite pixel

(@)
s1°

. @
Cover crop
feature

ENB Sy

" [Dormant | Cover crop |  Cash crop
season | growth growth
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erop?

Figure 1. Conceptual framework for quantifying cover crop
adoption in the U.S. Midwest using multi-source satellite data.

METHOD

Extracting cover crop features
Remote sensing NDVI time series for each satellite pixel are
decomposed into soil (SNDVI), cover crop (¢cNDVI), and cash
crop components (mNDVI), thus observed NDVI data at
crop fields can be written as:

NDVI = sNDVI + cNDVI + mNDVI (1)
where  sNDVI = min{NDVI,,d € T,} and mNDVI; =

max(NDVI)—sNDVI . ~ .
verpabed) ,d € T,}. T, is the non-growing season and T,

is the peak-growing season. The a and b are detected
emerging day and the maximum growth rate, respectively.
The cover crop feature (cSign) can be defined by:

cSign = Y52, cNDVI,d € Ty (2)
where Tj; is the growing season, P1 and P2 are detected cover
crop emerged and terminated dates.

RESULTS

Satellite-based cover crop detection

@ Satellite-predicted cover crop percentage NASS-reported cover crop percentage

0 300 60p
— ki

106°W  95W  90°W  85°W 00°W  95°W 0w 85w

(b) Comparisons between satellite-detected cover crop fields and ground truth cover crop fields

I Predicted L] Ground truth
Figure 2. (a) Satellite-based prediction of cover crops across the
Midwestern counties in 2017. (b) Field-level comparison of
satellite-detected cover crop fields and ground truth data.

Cover crop trends and their attribution

(@) Average cover crop adoption in the U.S. Corn Belt from 2000 to 2021
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Figure 3. Cover crop adoption in the U.S. Midwest from 2000 to
2021 derived from STAIR fusion NDVI time series.
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Figure 4. State-level cover crop adoption changes and their
relationships to the investment in promoting cover crop adoptions.

Dynamic vs fixed thresholds
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Figure 5. Performance of dynamic and fixed thresholds for
predicting cover crop percentages of each county in the U.S.
Midwest in 2017.

CONCLUSION

(1) High-frequency and 30-m satellite NDVI time series are
useful for determining field-level cover crop practice.

(2) Dynamic cover crop feature-threshold framework is
relatively accurate and robust for field-level cover crop
quantification.

(3) The increasing trend of cover crop adoption is highly
correlated to the funding for cover crop incentive programs.

(4) This project could offer a low-touch and reliable solution
to gather historical and current cover crop adoption
information needed for many
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Leonid Shumilo Agriculture velocity of Winter Wheat

Optical Flow Climate Velocity Technique 2 Stage Stratification for Area Estimation Agriculture velocity Flow
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Introduction

Top: Amazon
river tributaries,
Xingu river basin
(yellow), and
location of the
Belo Monte Dam
(red). Bottom:
Confluence of
Xingu tributary
with Amazon
main river, 2021-
08-04 from
Sentinel-2. There
is a stark water
color and
sediment
concentration
difference.

* Dams are a major anthropogenic control on watershed
hydrodynamics and geomorphology and, consequently, on
freshwater, particle, and nutrient exports across the land-
ocean continuum.

* However, dam disruptions have often been assessed within
independent disciplines: land cover change, hydrology, or
sedimentology / geomorphology.

* The world has shown divergent patterns regarding dams,
with the US increasing the rate of dam removal while other
regions such as South America and Southeast Asia increasing
dam building.

*  Within this work, we employ an interdisciplinary approach to
understand the interlinkages between terrestrial, deltaic, and
oceanic processes for two major dam systems: the Elwha
dam in Washington, US (removal) and Belo Monte in Brazil
(building).

Baskaran!, Matthew

Monthly surface water
height, surface water storage
(Sentinel-1,2,3, Landsat, SWOT,

streamflow)

Land cover change,
precipitation
(MODIS, Landsat, Sentinel-2,
TRMM)

Soil and Water Assessment Tool (SWAT): pre- and post-

dam interference runs

Sediment flux from SWAT

Geomorphology

Delta and beach extent,
channel width, slope
(field work, 1-D
morphodynamic models)

Coastal Ocean Response

ECCO-Darwin runs,
chlorophyll-a, temperature,
salinity, turbidity, light
attenuation
(MODIS, Sentinel-2,3, VIIRS)

Linkages between watershed land cover, hydrologic flux, and
sediment flux will be established using the SWAT model
leveraging in-situ and satellite datasets. Model outputs will be
used to inform the ECCO-Darwin model to understand
nearshore ocean responses driven by the watershed changes.
Further, geomorphologic characteristics will be quantified.

Integrated ecosystem evolution in response to dam disruptions

Expected Results

Top: Changes to
Lake Mills near
Glines Canyon
reservoirs over
time. The lake
has been filled
with sediment.
Bottom:
Sentinel-1
images of Belo
Monte Dam
(red) and the
filling of Main
Reservoir by
water (yellow
circle)

Elwha

Amazon

We expect changes landcover and hydrologic changes to be
detectable and quantifiable with satellite, which will inform the

SWAT model of the changing watershed characteristics.
™

A. Amazon delta Aug. 2017 (before Belo Monte dam completion) and B.
Amazon delta Aug. 2022 (after completion). C. Difference between 2017 and
2022. Red are areas where delta expanded and blue are areas where delta

receded.

Currently, we are working to characterize delta accretion and
erosional patterns for the Amazon river mouth during the Belo
Monte dam construction years, to quantify the relative
influence Xingu river basin may have on the nearshore

P N ol o JE |
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Aims of This Study Six Technical Objectives Hypothesis tested
* Analyze short-term variations in N cycle in relation to 1. Integrate land-based remote sensing with models The fluxes of reactive N from the Mississippi
short-term wetting/drying, heatwaves, drought, of hydrologic state and dynamics, nutrient River drainage basin to the Gulf of Mexico
extreme precipitation/flooding, and rapid freeze/thaw loading, mobilization, and sequestration under over the recent past are determined by the
» Link remote sensing, geospatial data, and in-situ climate extremes conjunction of nature-based and human-
analysis fo established models to detect, geo-position, 2. Apply estimation techniques (modeling, remote engfpeered mfrasfru-cfures associated with a
and analyze short-term variations in the N cycle sensing, and in situ data integration) for land-to-  relatively small fraction of the total land mass
« Develop environmental surveillance system to monitor atmosphere gaseous losses and analyze the drained by the river
dynamics of near-contemporary N cycle across the impact of climate variability rop. satelite
Mississippi River Basin/Gulf of Mexico land-to-ocean 3. Create aquatic transport and processing model imagery from
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. . resolution
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Watersheds, Water quality, and Coastal Communities in Puerto Rico (Water2Coasts): An

Juan L. Torres-Pérez interdisciplinary island landscape to coastal ocean assessment with socioeconomic
implications
oplectuves: =, . 258
Objective 1 — Watershed Dynamics: Use field data and | S PP
hydrological-LBSP modeling to characterize spatio-temporal (A - T g N
patterns of riverine discharge and water quality considering ¥, {{("I’TT\:) % 35 . )

land cover/land use, location of point sources of pollution, - YA /%?‘”j . . S
available precipitation climatologies, and socio-economic =~ [T e Al B

factors.

Objective 2 — Coastal Water Quality: Use current and legacy
satellite water quality products (chlorophyll-a [Chl-a], colored
dissolved organic matter [CDOM)], total suspended sediments
[TSS], vertical attenuation coefficients [Kd,,, and Kd,,.]), and
field bio-optical data to characterize patterns and constituents
of riverine plumes in coastal areas with CMEs of ecological
importance.

Objective 3 — Socio-economic Impacts: Analyze spatial

Water2Coasts Web

i} oo P - . o
o A\ East Walersheds Coral Reef & Col. Hardbottom Mapping Application

/
: /

vl
J"ﬁé 7, Southwest Watersheds Submerged Vegetation
Gaged areas (USGS)

measures of the socioeconomic vulnerability profile for PR to
assess differential impacts on these contrasting coastal
communities in southern and eastern PR, and test for spatial
associations among socio-economic vulnerability, water
quality variables, Sargassum accumulation, and ecosystemes.
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LCLUC Science Team Meeting April 2-4, 2024

Poster Lightnmg Introductions

Thank You



LCLUC Science Team

ST

Meeting April 2-4, 2024

Poster Session : 5:30 to 7:30

Gaithersburg Marriott Washingtonian Center
(Salon A and D)
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