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https://www.washingtonpost.com/world/2020/07/05/guatemala-cocaine-trafficking-laguna-del-tigre/

Narco-Trafficking

* Before 2015, Narco-trafficking through the Central American
corridor supplied over 80% of the cocaine consumed in North
America (UNODC, 2010, 2012)

* Central America became the preferred transshipment location in the
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Three main pathways for

narco-trafficking driven land-use

change:

* Direct use (e.g., narco-pistas,

territorial control)

* Money laundering (e.g., ca
ranching, palm oil)

tle

* Indirect effects (e.g., informal
markets, reinvestment of illicit
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Sesnie et al. (2017); Devine et al., (2020); Magliocca et
al. (2019, 2021, 2022); McSweeney et al. (2015, 2020),
Tellman et al (2020a, 2020b, 2021); Wrathall et al.
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Quantifying Narco-Land-Use Change

0 How much, when, and where is land-use change
caused by narco-trafficking?

Challenges:

* Detailed time series needed for causal inference > LUC Mapping
* Data are fragmented, incomplete, and unreliable > Data Pedigree

* Quantifying causal effect of direct + indirect
narco-trafficking actiGéynterfactual LUC Modeling



Quantifying Narco-Land-Use Change

Counterfactual land change modeling

Locations of Known Narco-Trafficking Activity
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0 How much, when, and where is land-use change

caused by narco-trafficking?

Magliocca, Dhungana, Sink (2023). Review of spatially explicit land change modeling for counterfactual analysis in land system science, |. Land Use Science



LUC Mapping Results
Land Use Change Maps 1986-2020
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Data Pedigree

Cocaine SLD (kg)

8 ] No Data
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] 10,000 - 100,000
[ 100,000 - 225,000
B 225,000 - 620,000

I 620,000 - 885,000

A data pedigree is a systematic grading system to assess the quality and
appropriateness of a wide range a data — from precise and authoritative

observations to informed guesses (Costanza et al. 1992).

Costanza, Funtowicz, Ravetz (1992). Assessing and communicating data quality in policy-relevant research, Environmental Management



Data Pedigree: Infrastructure

Road are one of the first identifiable markers of Narco-activit

Airstrips: possible markers of narco-activit

2km long, 20m wide

750m, 19m
Bing Imagery, 202

850m, 25m

Bing Imagery, 202




Data Pedigree: Infrastructure
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Data Ped1gree Infrastructure
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Mukherjee et al. (in prep). Gridded informal infrastructure probability from 2000-2022 using Landsat.
Mukherjee et al. (in prep). Pixel-based informal infrastructure detection using RapidEye and PlanetScope imagery.
Magliocca/Tellman-Sullivan et al. (in prep). Land-use change causal inference with informal infrastructure detection.



Data Pedigree: Infrastructure

Scene-based classification for infrastructure time series
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Number of Grids with Road Presence with a Fixed
Threshold from 2000 to 2020
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Bl Results will be more consistent after post
B processing:

y Removing cloudy, low quality grids
Cele Applying year-wise threshold instead of a
blanket threshold
Combining multiple years to improve grid
data quality




Data Pedigree

Creates a standardized, comparable, and integrated database




Data Pedigree

Qualitative decision-trees to score all data sources

Is the department (or more precise
geometry) of the event provided?

Is the municipality (or

[
No
National data
Score =1

Yes — more precise geometry) . o
of the event provided” Geographic Clarity
)
[ |
1\‘10 Y’es
Mapped to department boundary Is the event appropriately represented
Score =2 by a point/polygon at the given lat/lon
coordinates (e.g., property, address,
town)? |
Does the largest administrative area [ \
approximate the area influenced by the event — No Yes
(i.e., administrative area smaller than level 2)?
\ Mapped as a point/polygon
f \ Score =4
I\‘Io Y’es
Mapped to large sub-national Mapped to small sub-national
geometry (e.g., rural district) geometry (e.g., populated
Score =2 municipality)
Score =3

Magliocca et al. (in prep). Overcoming poor data availability with a data pedigree to study illicit economic activities.



Data Pedigree

Creates a standardized, comparable, and integrated database
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Data Pedigree

Creates a standardized, c

omparable, and integrated database
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Data Pedigree

Creates a standardized, comparable, and integrated database

Maya Biosphere
Reserve
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Land Change Modeling: Dyna-CLUE
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Magliocca, Dhungana, Sink (2023). Review of spatially explicit land change modeling for counterfactual analysis in land system science, |. Land Use Science



Counterfactual Land Change Modeling

Effect size (%) of narco-trafficking presence
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Magliocca et al. (in prep). Narco-trafficking caused land-use change in and around Central America’s protected areas.
Magliocca et al. (in prep). Comparative performance of quasi-experimental matching and counterfactual modeling for causal inference in land-use change research.



Next Steps

Infrastructure detection and classification
 Validation of Landsat gridded model (May fieldwork)

 Gridded Landsat model of MBR, RPBR AQOIs
* Pixel-based road segmentation, adding RapidEye to 2009

Land change mapping
« MBR and RPBR AQlIs, validation

Counterfactual land change modeling
* Implementation and scalability at 30m resolution
* Compare with quasi-experimental matching
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Research Plan

0 How much, when, and where is land-use change
caused by narco-trafficking?

d 8 1. Data Pedigree

narco-trafficking activity

Location & Obj. 3: Quantify LUC directly and indirectly

Task 1.1: Database of timing of attributable to narco-trafficking

existing & acquired data narco-traffickin

Task 1.2: Annual infrastructure g activity

maps 2000-2020 2. CNN inference Treatment
Locations

Obj. 2: Hotspots of LUC :
= o 3. LUC Mapping Task 3.1: LUC
Task 2.1: Annual LUC maps offect sizes
1985-2020 Observed LUC

Task 2.2: Counterfactual LUC LUC
f | L
maps 1985-2020 Counterfactual LUC Controls

4. LUC Modeling




Land cover maps:
methodology

Osa receives 5+ meters of rain a year; very cloudy,
especially in the 1990s.

Google Earth Engine was used to create 3-year
composites of Landsat data from 1986 to 2020.

Landsat clouds were masked using the CFMask
algorithm and custom cloud masks.

Using GEE, additional SAR (Sentinel-1, ALOS Palsar) and spe
(Sentinel-2) data were added for available years, as well as texture
variables.

Extensive training data set (n=~120,000 pixels); Random Forest mode

were developed for each year to produce 30 m resolution maps.

Rules-based land cover map compositing was used to further minimize
the effects of clouds and cloud shadows.



Model Training Accuracies
ALOS PALSAR, 30m, only 2 bands (HH, HV) = Overall 81.5%, no road correctly
detected = 79.8%, road correctly detected = 82.8%

PlanetScope NICFI, 5m, 4 bands = Overall 90.1%, no road correctly detected
= 87%, road correctly detected =92.5%

Landsat 8, 30m, 6 bands = Overall 88.75%, no road correctly detected =
86.7%, road correctly detected = 90%

Landsat 7, 30m, 6 bands = Overall 87.54%, no road correctly detected =
81.1%, road correctly detected = 91%

26



Data Pedigree

Creates a standardized, comparable, and integrated database

Criteria:
1 Geospatial Clarity — does the data represent the event?

Is the department of

: GeOSpatla In the event provided?

1 Authorial Pro Yes ovider?
| |

1 Narco-Traffichkas s the municipality (or nomenon?

Score=1 equivalent admin. level 2) of

the event provided?

[l Temporal Acq —
Yes

Mapped to department boundary Is the event appropriately represented by
Score =2 a point at the given lat/lon coordinates

(e.g., property, address, town)?

)
No Yes

Mapped to municipality boundary Mapped as a point
Score=3 Score=4



Geographic Clarity

Is the department (or more precise

geometry) of the event provided?
Is the municipality (or

\ )
( Yes — more precise geometry) of
No the event provided?
\
National data ( \
No Yes

Score=1

Mapped to department boundary Is the event appropriately represented
Score =2 by a point/polygon at the given lat/lon
coordinates (e.g., property, address,

town)? I
Does the largest administrative area (
approximate the area influenced by the event — No
(i.e., administrative area smaller than level 2)?
\
( \
1\|Io Yes
|
Mapped to large sub-national Mapped to small sub-national
geometry (e.g., rural district) geometry (e.g., populated
Score =2 municipality)

Score =3

|
Ybs

Mapped as a point/polygon
Score =4



Narco-Trafficking Certainty

Does the event refer an illegal or
informal economic activity (e.g., legal
activity in prohibited area)?

\
( \
No Yes
Reported event cannot Is the event related to
be differentiated from organized crime?
legal activities. : \ |
Score=0
No Yes
Relationship of the actor or activity Does the event refer
cannot be linked to drug trafficking specifically to drug trafficking
Score =2 (i.e., not just a drug arrest)?*
\
( \
No Yes
Reported event is an organized criminal activity Event references activities and/or law
but not reportedly linked directly to drug enforcement actions involving narco-traffickers
trafficking (e.g., money laundering) Score=4

Score=3



Discussion

Rate of oil palm expansion:

« Sumatra and West Malaysia: 2.26% from 2000-2015 (Wagner et al., 2022)

* Osa study region: 15.1% from 2007-2019

* Narco-trafficking areas: 40.37% from 2007-2019
* Counterfactual rates highest 2013, 2016
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Insights from field interviews:

« Oil palm sector vulnerable to infiltration in all supply chain phases
* Rapid infrastructure development in ag and tourism sectors

« Costa Ricans serving as “logistics contractors’

 lllicit capital from trade visible in poor communities

Wagner, Wentz, Stuhlmacher(2022). Quantifying oil palm expansion in Southeast Asia from 2000 to 2015: A data fusion approach. JLUS



