International Meeting on Air Pollution in Asia –Inventories, Monitoring and Mitigation

Hanoi Club Hotel, Hanoi, Vietnam 02/01/2023 to 02/03/2023

Bottom-Up Emissions Inventory Analysis for a Typical Eastern Visayas City in the Philippines

EDGAR A. VALLAR, Ph.D.* JOSE BIENVENIDO BIONA, Ph.D.** FLORO JUNIOR ROQUE, MSc Candidate*

*Physics Department

- ** Mechanical Engineering Department
- De La Salle University

2401 Taft Avenue, Manila, Philippines

E-mail: edgar.vallar@dlsu.edu.ph

Clean Air for Future Generations

Remote Environmental Sensing Researches of the Applied Research for Community, Health and Environment Resilience and Sustainability (ARCHERS) and Environment And RemoTe sensing researcH (EARTH) Laboratory

Edgar Vallar, Ph.D.; Maria Cecilia Galvez, Ph.D.; Ofelia Rempillo, Ph.D.; Prane Mariel Ong, Ph.D.; Jazzie Jao, MSc

Undergraduate			
9	MS Physics	7	
	PhD Physics	2 + 1 (Chiba, Japan)	EART

What is Clean Air?

https://byjus.com/physics/air-composition-properties/

Question : What are the 2 biggest components of Clean Air?

How can we pollute the air?

https://www.nature.nps.gov/air/aqbasics/sources.cfm

Philippine National Air Quality Guideline Values (from RA8749)

Parameter	Averaging Time	NAAQGV(µg/NCM)
TSP	Annual	90
	24-hour	230
PM10	Annual	60
	24-hour	150
PM _{2.5}	Annual	35 (Until 31 Dec, 2015), 25 (By 1 January, 2016)
	24-hour	75 (Until 31 Dec, 2015), 50 (By 1 January, 2016)
Sulfur Dioxide (SO ₂)	Annual	80
	24-hour	180
Nitrogen Dioxide	Annual	-
(NO ₂)	1-hour	-
	24-hour	150
Ozone (O3)	8-hour	60
	1-hour	140
Carbon Monoxide	8-hour	10
(CO)	1-hour	35
Lead (Pb)	annual	1
	3 months	1.5

El Development Approaches

- "Top-down" approach: typically used when local data are not available, the cost to gather local information is prohibitive
- "Bottom-up": when source specific activity or emission data are available and this approach produce more accurate estimates than a top-down approach

Emission Sources

Area Source

On-road Mobile Source

Non-road Mobile Source

Bottom-up Emission Inventory

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

E= EF x AD x (100-CE)/100

- **E**: Emission Load
- **EF:** Emission Factor
- **AD**: Activity Data
- **CE**: Control Efficiency

For AREA Sources (Households, etc)

FOR ANDROID USERS

STEP 1:

Download KoBoCollect

Android devices:

Google Play -> Search "KoBoCollect" -> download

Apple devices:

Web browser ->

bit.ly/El_Survey

KoBoCollect

KoboToolBox Tools	* * *	* * * 689 🚨
3+		
This app is compatible wit	th your device.	
	Add to Wishlist	Install

ON-Road Mobile = 24 hours on-site vehicle classification and counting

Roads selected – M, W, Sat, Sun; 2 weeks in January and 2 weeks in February; 1 Expressway; 2 of Primary; 3 of Secondary; 3 of Tertiary; 1 LGU

Expressway 1:	Primary 1. 2.	Secondary 1. 2. 3.
Tertiary 1. 2. 3.	LGU maintained 1.	

Major Roads in Tacloban City

Table 3 Selected major roads by DENR-EMB Tacloban

Name	Number of Road Lanes	Number of Traffic Ways	Location	Road Length in meters
Zamora Street	2	1	Downtown	848.8569
Burgos Street	2	1	Downtown	840.1334
Avenida-Veteranos Street	2	1	Downtown	859.3735
Real Street	2	2	Downtown/PRS	3650.023
Anibong Road	2	2	AQM High	2251.112
Quezon Avenue	2	2	AQM High	1350.85
Congressman Mate Avenue	2	2	Downtown	1681.885
AH26 - Maharlika Highway	2	2	AQM High	4538.849
Pajara Road	2	2	PRS Roads	1805.511
San Jose Road	2	2	PRS Roads	4079.458
Rizal	2	1	Downtown	445.3141

Household Emissions Results

Household Emissions Results

Household Emissions Results

The attached EI Report provides the plots needed for the 2019 Emission Inventory. Below are the geographical distribution of these emissions. Please note that all the data presented is for the Tacloban Airshed only.

I. STATIONARY SOURCE

a.Total Mass Emission Expressed in Tons/year

CO	NOx	SOx	NMVOC	PM10	PM2.5
0.3	1	0.2	0.007	0.009	0.007

b. Graphical presentation of the Total Emission (Tons/year) in Bar Chart

c.Classification of Stationary Sources in Pie Chart according to the following:

i.According to criteria pollutant (PM, CO, NO_x, SO_x, and VOC)

ii.According to Equipment

Spatial Distribution of Particulate Matter (PM) for Stationary Sources

Spatial Distribution of Carbon Monoxide (CO) for Stationary Sources

Spatial Distribution of Nitrogen oxide (NOx) for Stationary Sources

Spatial Distribution of Sulfur Oxide (SOx) for Stationary Sources

Spatial Distribution of Volatile Organic Compounds (VOC) for Stationary Sources

II. MOBILE SOURCE

a.Total Mass Emission Expressed in Tons/year

CO	NOx	SOx	NMVOC	PM10	PM2.5
2226.2	261.9	2.2	278.2	46.5	37.2

b. Graphical presentation of the Total Mobile Source Emission (Tons/year) in Bar Chart

Motor Vehicle Total Emissions in Tons/year by Vehicle Type

	NMVOC	со	NOx	PM10	PM2.5	SOx	CH4	CO2
Tricycle	78.79	515.88	6.13	1.38	1.10	0.07	78.79	1349.92
Motorcycle	104.23	601.99	12.05	1.62	1.29	0.11	104.23	1907.45
Multicab (Private)	14.27	186.38	10.43	0.02	0.02	0.05	14.27	2330.69
Multicab (for Hire)	36.81	479.78	26.60	0.05	0.04	0.13	36.81	5545.20
Jeepney	3.97	53.75	2.65	14.72	11.77	0.37	3.97	13659.05
Sedan	16.77	206.42	16.36	0.52	0.42	0.21	16.77	6117.61
SUV	9.83	87.00	27.66	4.14	3.31	0.27	9.83	4850.01
Light Duty	9.84	111.95	74.83	20.97	16.76	0.76	9.84	16911.72
Bus	0.68	2.34	8.38	0.40	0.32	0.02	0.68	345.42
Heavy Duty	4.04	15.34	79.41	2.66	2.13	0.21	4.04	2830.87

c.Classification of Mobile Sources in Pie Chart according to the following:

i. According to criteria pollutant (PM, CO, NO_x, SO_x, and VOC)

ii. According to Vehicle Type

Spatial Distribution of Particulate Matter (PM) for Mobile Sources

Spatial Distribution of Carbon Monoxide (CO) for Mobile Sources

Spatial Distribution of Nitrogen Oxides (NOx) for Mobile Sources

Spatial Distribution of Sulfur Oxides (SOx) for Mobile Sources

Spatial Distribution of NMVOC for Mobile Sources

III. AREA SOURCES

a. Total Mass Emission Expressed in Tons/year (Using AP 42 emission factor)

СО	NOX	SOX	NMVOC	PM10	PM2.5
1070.8	47.1	3.8	2060.8	132.3	105.9

b.Graphical presentation of the Total Emission (Tons/year) in Bar Chart

c. Classification of Stationary Sources in Pie Chart according to the following:

i.According to criteria pollutant (PM, CO, NO_x, SO_x, and VOC)

ii.According to Area Sources

SPATIAL DISTRIBUTION OF PARTICULATE MATTER (PM) FOR AREA SOURCES

SPATIAL DISTRIBUTION OF CARBON MONOXIDE (CO) FOR AREA SOURCES

SPATIAL DISTRIBUTION OF NITROGEN OXIDES (NOx) FOR AREA SOURCES

SPATIAL DISTRIBUTION OF SULFUR OXIDES (SOx) FOR AREA SOURCES

SPATIAL DISTRIBUTION OF VOLATILE ORGANIC COMPOUND (VOC) FOR AREA SOURCES

IV. SOME USEFUL FIGURES

Figure IV.1 Mobile sources dominate CO and NOx emissions while area sources contribute most of the SOx, NMVOC, PM10 and PM2.5 emissions in Tacloban.

Figure IV.2 Genset Emissions

Figure IV.3 Boiler and other Point Source Emissions

Figure IV.4 Mobile Emissions Share per Vehicle

Figure IV.5 Mobile Emissions Share by Major Road

Figure IV.6 Mobile Emissions per Barangay

Pollution Dispersion Modeling (WRF-Chem)

Domains	Domain 1	Domain 2	Domain 3	
Horizontal Resolution	25 km	5 km	1 km	
Vertical Resolution	51 levels	51 levels	51 levels	
Grid Points West-East	70	106	116	
Grid Points South- North	70	106	116	
Center Latitude	11.254°N			
Center Longitude	124.962°E			

Pollution Dispersion Modeling

Figure 2 (a) Shapefile of Tacloban Airshed, (b) Topography, and (c) Elevation Map

ADM Results using the obtained Emissions Inventory Baseline and Scenario for Maximum PM2.5

Ambient Pollutant Concentrations in Tacloban City for Different Scenarios (<u>Annual Average</u>)

Baseline PM2.5

PM2.5 Sc3 (50% inc. vehicles)

Figure IV.6 Baseline Average PM2.5 for Tacloban City

Tons per Year

■ CO ■ NOX ■ SOX ■ NMVOC ■ PM10 ■ PM2.5

Carrying Capacity of Tacloban Airshed

Pollutant	Area	Stationary	Mobile (Baseline)
со	32.48%	0.01%	67.52%
NO _x	15.19%	0.32%	84.48%
SO _x	61.29%	3.23%	35.48%
NMVOC	88.11%	0.00%	11.89%
PM ₁₀	73.99%	0.01%	26.01%
PM _{2.5}	74.00%	0.00%	25.99%

