David Roy^{a, b}, Haiyan Huang^a, Luigi Boschetti^c, Hugo De Lemos^a, Louis Giglio^d

^a Center for Global Change and Earth Observations (CGCEO), Michigan State University

^b Department of Geography, Environment, and Spatial Sciences, Michigan State University

^c College of Natural Resources, University of Idaho

^d Department of Geographical Sciences, University of Maryland, College Park

NASA LCLUC Science Team Meeting, May 8-12th, College Park, MD, USA

The definitive global burned area record:

NASA MODIS 500m burned area product

Giglio, Boschetti, Roy, Humber, Justice, 2018, *RSE*

Mean Burned Area mapped by NASA MODIS 500m product for 2002-2021

on average 2.7 % of the land surface reported as burned each year

Mean Burned Area mapped by NASA MODIS 500m product for 2002-2021

on average 2.7 % of the land surface reported as burned each year

Under-reporting example

August 24th 2001

Road North to the Chimaliro forest reserve, Malawi

miombo woodland reserve - the hilly area on the horizon

September 26th 2001, Chimaliro forest reserve MODIS 500 m pixels (1.65μm, 1.24μm, 0.86μm)

31km x 23km

September 26th 2001, Chimaliro forest reserve Landsat 30 m pixels (1.65μm, 0.82μm, 0.66μm)

31km x 23km

Quantifying small burns is rather important for applications and science !

Global burned area and biomass burning emissions from small fires

J. T. Randerson M, Y. Chen, G. R. van der Werf, B. M. Rogers, D. C. Morton

First published: 11 December 2012

"Accounting for small fires increased total global burned area by ~35%, but a formal quantification of uncertainties was not possible ... " Under our previous NASA LCLUC funding:

Africa 30 m NASA Harmonized Landsat Sentinel-2 (HLS) Burned Area Product Generation

Roy, Huang, et al. 2019, Landsat-8 and Sentinel-2 burned area mapping - a combined sensor multi-temporal change detection approach, *RSE*, 231, 111254.

Landsat 8 and Sentinel S2

same day

Harmonized Landsat Sentinel-2

Home	Algorithms	Products Description	Test Sites	Data	QA	Documents	News	f 🖻	ঀ

• 30 m gridded

ASA

- atmospherically corrected
- near-global coverage
- global median revisit 3 days

Landsat 8

New opportunity for monitoring land surface change at scales where human activity is discernable

NASA MODIS 500m burned area

Jan 2019

Apr 2019

June 2019

Aug 2019

- Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution.
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution.
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data.
- •Task #4 Provide the hot-spot 30 m burned area maps and 3 m PlanetScope validation data to the public.
- •Task #5 Quantify the global MODIS 500 m burned area product underestimation due to its omission of small burns.

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution.
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data.
- •Task #4 Provide the hot-spot 30 m burned area maps and 3 m PlanetScope validation data to the public.
- •Task #5 Quantify the global MODIS 500 m burned area product underestimation due to its omission of small burns.

radiance [W m⁻² um⁻¹ sr⁻¹]

Well established that thermal λ active fire detection algorithms can detect small fires not apparent in reflective λ data

Roraima, Brazil, Jan. 28 2003

uncalibrated raw counts

Hot-spot selection approach

- Spatial stratification
 S 100 x 100 km tile
 - HLS 109 x 109 km tile grid
 - 7 biome global map
- Temporal stratification calendar months

• Rank the HLS tiles in each month by the proportion of VIIRS 375 m active fire detections occurring outside 500 m MODIS burned areas

Count All 12 months of 2019

Top 1000 hot-spots with greatest incidence of VIIRS 375 m active fire detections outside of MODIS 500 m burned areas (different number selected per biome using a biome area proportional allocation)

Biome

tropical_forest , 15
 temperate_forest , 1
 boreal_forest , 0
 tropical_savannah , 90
 temperate_savannah , 0
 mediterranean , 0
 deserts_and_xeric_shrublands

January 2019

Of the 1000 the top 110 hot-spots with greatest incidence of VIIRS 375 m active fire detections outside of MODIS 500 m burned areas

Biome

tropical_forest , 25
 temperate_forest , 1
 boreal_forest , 19
 tropical_savannah , 77
 temperate_savannah , 7
 mediterranean , 3
 deserts_and_xeric_shrublands

August 2019

Of the 1000 the top 136 hot-spots with greatest incidence of VIIRS 375 m active fire detections outside of MODIS 500 m burned areas

- We have generated monthly ranked hot-spot lists with 1000s of entries per month (as there are >18,000 HLS land tiles)
- Final ones used (for Tasks #2-5) depend on HLS and PlanetScope availability

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution.

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution. Capability Done

HLS 30 m burned area

Example selected hot-spot tile

Jan 2019

109 x 109 km HLS tiles

center at 6.70°N, 18.77°E

MODIS 500 m burned area

Υ÷.

Example selected hot-spot tile

Jan 2019

109 x 109 km HLS tiles

center at 6.70°N, 18.77°E

HLS 30 m burned area

Example selected hot-spot tile

Jan 2019

109 x 109 km HLS tiles

center at 6.70°N, 18.77°E

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution. Capability Done
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data.

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution. Capability Done
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data. Capability Done

PlanetScope constellation average revisit interval analysis

Roy, Huang, Houborg, Martins, RSE, 2021

average revisit (hours)

18

24

36

48

72

96

- ~200 sensors
- ~3m
- blue / green / red / NIR $\,\lambda$

Global median PlanetScope revisit **30.3 hours !**

630 nm 820 nm 545 nm surface reflectance

Isalo National Park Madagascar

15.4 × 10.7 km 5134× 3568 3 m pixels

July 12nd 2019

630 nm 820 nm 545 nm surface reflectance

Isalo National Park Madagascar

15.4 × 10.7 km 5134× 3568 3 m pixels

July 16th 2019

Used Landsat-8 two date image pairs interpreted into burned, unburned, and unmapped classes

(Landsat-8 interpreted data used previously to validate the MODIS burned area product)

for transfer learning to PlanetScope

Commercial Smallsat Data Acquisition
CSDA) Program

Deep learning high resolution burned area mapping by transfer learning from Landsat-8 to PlanetScope

```
V.S. Martins *, D.P. Roy *, <sup>b</sup> 은 쯔, H. Huang *, L. Boschetti °, H.K. Zhang <sup>d</sup>, L. Yan *
```

Show more 🗸

+ Add to Mendeley 😪 Share 🗦 Cite

https://doi.org/10.1016/j.rse.2022.113203 Under a Creative Commons license Get rights and content • Open access

Highlights

- PlanetScope two-date 3 m burned area deep learning classification.
- Transfer learning with pre-existing Landsat-8 derived burned area reference data.
- Results for 659 radiometrically normalized PlanetScope image pairs across Africa.
- Classification with 12% 3 m burn omission and commission errors.
- Commission and omission errors largely compensate at 30 m resolution.

PlanetScope 2019 July 5th

PlanetScope 2019 July 6th

Deep learning burned area classification

Detailed HLS burned area validation example

6.9 x 5.3 km Moxico province, Angola Detailed HLS burned area validation example

6.9 x 5.3 km Moxico province, Angola

This year we updated the Deep Learning Model with active learning derived training data

Use active learning / deep learning to efficiently derive large training data sets from PlanetScope time series

NASA ACCESS

Published deep learning model results

Updated deep learning model results

Updated deep learning model results

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution. Capability Done
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data. Capability Done
- •Task #4 Provide the hot-spot 30 m burned area maps and 3 m PlanetScope validation data to the public.

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution. Capability Done
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data. Capability Done
- •Task #4 Provide the hot-spot 30 m burned area maps and 3 m PlanetScope validation data to the public. At project end

- We have generated monthly ranked HLS tile hot-spot lists
- <u>Currently</u> searching through the entries considering the highest ranked (i.e. greatest incidence of VIIRS 375 m active fire detections outside of MODIS 500 m burned areas) to find locations where both HLS and PlanetScope imagery are available

- •Task #1 Identify global hot-spots of burned areas, specifically where the burns are missing at MODIS 500 m resolution. Done
- •Task #2 Map the burned area in the identified hot-spots at 30 m resolution. Capability Done
- •Task #3 Validate the 30 m burned area hot-spot mapping results using contemporaneous 3m PlanetScope data. Capability Done
- •Task #4 Provide the hot-spot 30 m burned area maps and 3 m PlanetScope validation data to the public. At project end
- •Task #5 Quantify the global MODIS 500 m burned area product underestimation due to its omission of small burns. Exciting

David Roy^{a, b}, Haiyan Huang^a, Luigi Boschetti^c, Hugo De Lemos^a, Louis Giglio^d

^a Center for Global Change and Earth Observations (CGCEO), Michigan State University

^b Department of Geography, Environment, and Spatial Sciences, Michigan State University

^c College of Natural Resources, University of Idaho

^d Department of Geographical Sciences, University of Maryland, College Park

THANKS

NASA LCLUC Science Team Meeting, May 8-12th, College Park, MD, USA