Visible near-infrared (VNIR) and mid-infrared (MIR) Lab spectroscopy for soil texture classification: Analysis of machine learning and spectral bands selection techniques

> Presented by- Ternikar Chirag Rajendra PhD student under guidance of Prof. D Nagesh Kumar Department of Civil Engineering, IISc, Bangalore

Date of Joining -31/07/2018

International Workshop On Land Cover/Land Use Changes, Forestry, and Agriculture in South/Southeast Asia

Highlights

- VNIR, MIR and VNIR+MIR lab spectroscopy and machine learning was used to classify soils as per USDA texture triangle.
- Models were compared for classification with reduced number of spectral bands as opposed to all the bands.
- Physical interpretation of the important bands selected was tabulated.
- Inaccuracies in classification of individual texture classes were compared in terms of neighbour and far classes accuracy.

Contents

- Importance of Soil as function and it's properties
- How have researchers classified soil texture
- Proposed Objectives and Methodology
- Physiochemical and Spectroscopy dataset
- Evaluation strategy for classification
- What did we find? Is it useful?
- What should be done next?

Introduction-Importance of Soil

- Soil is a vital component of Earth surface providing ecosystem services, filters water, supplies nutrients to plants, provides us with food, fibre and energy, stores carbon and regulates the emissions of greenhouse gases and it affects our climate
- Unprecedented pressures on soil from degradation and urbanisation, threatening above functions, agroecological balances and food security. Sustainable soil management is important as per Sustainable Development Goals (Goal 2 – Zero Hunger)
- India Total Land Area 328 M Ha
- Soil Health card Scheme for India was conceptualized in 2015:
 - The government is planning to cover as many as all farmers under the scheme
 - The scheme will cover all the parts of the country
 - In the form of soil card, the farmers will get a report and this report will contain all the details about their particular farm
 - A farm will get the soil card once in every 3 years
- It will contain status of the soil with respect to 12 parameters: (N, P, K, S, Zn, Fe, Cu, Mn, B, pH, EC, OC)

Soil Mapping in India

Organization	Type of Survey	Scale	Area/Districts covered (M ha)
	Small scale soil mapping	1:2,50,000	300.5
(National Bureau of Soil	Soil resource mapping	1:50,000	198.4
Survey and Land	Detailed soil survey	1:4,000/15,000	8.48
Use Planning)	Detailed soil survey (Sujala III project)	Cadastral	11 districts
	Detailed soil survey (LRI flagship programme)	Cadastral	115 blocks (22 states)
SUUSI	Rapid reconnaissance survey for watershed prioritization	1:50,000	200
(State Land Use Survey	Land degradation mapping	1:50,000	65 districts
of India)	Detailed soil survey	1:4,000/15,000	13.5
	Soil resource mapping under NRIS (DOS)	1:50,000	89 districts
NRSC	Waste land mapping	1:50,000	India
(National Remote Sensing Centre)	Soil resource mapping under NRIS (DOS)	1:50,000	200

Literature Review

	Detecto	rs:	PbS	HgCdTe	Si:X	(In	GaAs	M	EMS		
		Continu	alimprovement	s in computing	g and statis	sticschem	ometrics	, machine	learning, Ba	yesian	
						R	obust, sn	naller, chea	aper spectro	meters	
							In situ	and ex sit	u field appli	cations	
								Developm	nents in fibre	optics	
								Impro	ved underst	anding	
								Larg	ge spectral li	braries	
									Hyperspec	tral RS	
									New appli	cations	
Soil	∕is–NIR spe	ectros	copy timelin	e					li	maging	
									•		
1920	1930	1940	1950	1960	1970	1980	199	0 20	000 20	010 2	2020
	1925) 1927) 1931)	1939)	1952)	1964) 1965)	1970) 1972) 1973)	1977 1979 1980 1981	1985) 1986) 1991) 1990)	1991) 1994) 1995) 1998)	2002) 2004) 2006) 2006)	2015) 2013 2013 2015 2015 2015 2015 2015 2015 2015 2015	
	öm () leal (ster (.) syc	lov (al.	unt sta ner	989.	nin () Jey ()	ਯ ਯ ਯ ਯ	al a	
	O'N Ca	Hes	Broo	& Or & Hai	alisb as ef ier et	a Co an el gardi	& He el	& Ba & Ba Prati	& Wa ev et en et sel et sel et	a Ros erg et er (20 sia et	
	A			khov vers	It & S I-Abb Learr	D Baum Baum	balal balal bet a	& Mc	Mall Mall Nos Hos	Carra lebsta Steve Noc	
				Obu Bov	Hur	× × ×	Saum Iddut Clar	et al. Ben S Ssel	shept et al. M al.; S	oriar, Si soriar	
						Stone	ы N	lorra ra Rc	al.; S latte ; Vise ez et	l et. a	
							2	liscar N	Derrty et Gomen	laure rra R	
								>	AcCa rown t al.; (lon-N Visca	
									stvel B	Be	
				Source: \	/iscarra Ross	sel. et al (201	.6)		iri		

Literature Review

- Currently, new technologies are used to produce miniaturised, rugged and economical hand-held instruments
- Adoption of VNIR and MIR in laboratories is taking traction
- The black disc in 2008 represents the conception of the global soil spectroscopy project
- Characterize soil and its variability
- Deriving a spectral classification to describe the associations between spectra, soil, land cover and geography
- Usefulness of the global database for predicting soil attributes, such as soil organic and inorganic carbon, clay, silt, sand and iron contents, cation exchange capacity, pH and many other properties.
- DSM (Digital Soil Mapping) efforts on large scale:
 - OzDSM, Australia- 2008
 - Global Soil Map, DSM, UN 2007
 - DSM, Europe 2010
 - ISRIC, World Soil Information 2005
 - India, NBSS&LUP 2018

Soil Texture

- Soil texture data are utilised in following studies (Agriculture, Water Resources, Landscape Management):
 - Crop suitability
 - Crop yield and growth pattern
 - Precision Agriculture
 - Surface runoff modelling
 - Soil erosion modelling
 - Soil moisture patterns
 - Slope-stability analysis
 - Disaster mitigation and management
 - Landscape management
 - Belowground C, N storages

• DSM (Digital Soil Mapping) provides topsoil properties. No depth information/profile.

Soil Texture Classification

Name of soil separate	USDA Diameter Limits (mm)	WRB Diameter Limits (mm)		
<mark>Clay</mark>	<mark>< 0.002</mark>	<mark>< 0.002</mark>		
<mark>Silt</mark>	<mark>0.002 – 0.05</mark>	<mark>0.002 – 0.063</mark>		
Very fine sand	0.05 – 0.10	0.063 – 0.125		
Fine sand	0.10 - 0.25	0.125 – 0.20		
Medium sand	0.25 – 0.50	0.20 – 0.63		
Coarse sand	0.50 – 1.00	0.63 – 1.25		
Very coarse sand	1.00 - 2.00	1.25 – 2.00		
<mark>Coarse</mark>	<mark>> 2.00</mark>	<mark>> 2.00</mark>		

USDA – United States Department of Agriculture WRB – World Reference Base for Soil

Soil Texture Measurement

- Particle size distribution using International Pipette method / Robinson's pipette method
- Test sample is dried, tested for calcium carbonate and treated for calcareous content and organic content removal
- Sand is separated using sieving
- Clay is separated using dispersion.
- Silt content is calculated as:
 Silt % = 100 (Sand % + Clay %)
- Time taken: ~3-5 days

Lab Spectra Measurement

Materials:

- 1 Spectroradiometer
- 1 White reference panel, 5x5'
- 2-4 Tungsten Halogen Lamp

Set up:

- Instrument warm up time 60 mins
- Lamps warm up time 20 mins
- No. of spectra per target 30
- Dark current average of scans 50
- White reference number of scans 50

Lab Spectra Measurement

ASD Field Spec VNIR with optical setup

VNIR setup: ASD Spectroradiometer and optical accessory for diffuse reflectance measurement

Source: ICRAF-ISRIC, 2019, Vagen et al., 2020

Bruker MIR FT-IR (a) with HTS-XT setup (b)

Aluminium plate filled with soil samples

MIR setup: Bruker MIR FT-IR with HTS-XT for diffuse reflectance measurement

Physiochemical and Spectroscopy dataset

- ICRAF-ISRIC Soil Spectral Library
 - 4438 soil samples from 754 profiles totally in 58 countries
 - Soil texture by International pipette method in different labs and time
 - After preprocessing 3643 samples were used
- VNIR spectra
 - 204 bands (@10 nm) in 410-2440 nm
 - ASD field spec at ICRAF plant lab
- MIR spectra
 - 1762 bands (@ 4 cm⁻¹) in 2441-14286 nm
 - Bruker FTIR at ICRAF plant lab
- VNIR+MIR spectra
 - 1966 bands in 410-14286 nm

Methodology

Evaluation (OA,K)

VN	IR (MNLR)	Measured Classes (%)											
	Texture	Sa	LoSa	SaLo	SaCILo	SaCl	Cl	CILo	Lo	SiCl	SiClLo	SiLo	Si
	Sa	50	23	14	0	0	0	3	12	5	1	7	0
	LoSa	4	8	1	0	0	0	0	0	0	0	0	0
(%)	SaLo	18	38	37	12	0	2	13	20	7	10	8	0
es	SaCILo	3	6	9	17	7	1	3	0	0	0	0	0
ass	SaCl	0	0	0	0	0	0	0	0	0	0	0	0
	Cl	7	4	14	68	93	94	57	22	61	24	11	0
tec	CILo	0	0	1	0	0	0	2	0	0	0	0	0
dic	Lo	1	4	3	0	0	0	2	5	0	1	2	0
Pre	SiCl	0	0	0	0	0	0	0	0	0	0	0	0
	SiClLo	1	0	2	1	0	2	6	8	7	19	5	0
	SiLo	15	17	19	3	0	1	14	34	20	44	67	100
	Si	0	0	0	0	0	0	0	0	0	0	0	0
0A =	$OA = \frac{\sum_{i=1}^{Nc} M_{i,i}}{\sum_{i,j=1}^{Nc} M_{i,j}} = \frac{l}{s} \qquad \qquad K = \frac{l * s - \sum_{j=1}^{Nc} (\sum_{i=1}^{Nc} M_{i,j} * \sum_{i=1}^{Nc} M_{j,i})}{s^2 - \sum_{j=1}^{Nc} (\sum_{i=1}^{Nc} M_{i,j} * \sum_{i=1}^{Nc} M_{j,i})}$												

Source: Cohen, (1960); Congalton, (2001)

Evaluation (NA, ANA)

Table of USDA texture classes and their corresponding neighbours derived from USDA texture triangle

Texture Class	% Area covered in Texture triangle	Texture Class abbreviation	No. of Neighbours	Neighbours
Sand	1.50	Sa	1	LoSa
Loamy Sand	3.00	LoSa	2	Sa, SaLo
Sandy Loam	11.45	SaLo	4	LoSa, SaClLo, Lo, SiLo
Sandy Clay				
Loam	7.65	SaCILo	4	SaLo, SaCl, ClLo, Cl
Sandy Clay	4.00	SaCl	3	SaCILo, CILo, CI
Clay	29.75	Cl	4	SaCl, ClLo, SiClLo, SiCl
Clay Loam	6.25	CILo	7	Lo, SaClLo, SaCl, Cl, SiCl, SiClLo, SiLo
Loam	7.45	Lo	4	SaLo, SaClLo, ClLo, SiLo
Silty Clay	4.00	SiCl	3	Cl, ClLo, SiClLo
Silty Clay				
Loam	5.00	SiClLo	4	SiCl, Cl, ClLo, SiLo
Silt Loam	16.50	SiLo	5	Si, SaLo, Lo, ClLo, SiClLo
Silt	3.45	Si	1	SiLo

Evaluation (NA, ANA)

Neighbour Classes Matrix (N) derived from the USDA texture triangle

Texture Class	% Area covered in Texture triangle	Texture Class abbreviation	No. of Neighbours	Neighbours
Sand	1.50	Sa	1	LoSa
Loamy Sand	3.00	LoSa	2	Sa, SaLo
Sandy Loam	11.45	SaLo	4	LoSa, SaClLo, Lo, SiLo
Sandy Clay Loam	7.65	SaCILo	4	SaLo, SaCl, ClLo, Cl
Sandy Clay	4.00	SaCl	3	SaCILo, CILo, CI
Clay	29.75	CI	4	SaCl, ClLo, SiClLo, SiCl
Clay Loam	6.25	CILo	7	Lo, SaClLo, SaCl, Cl, SiCl, SiClLo, SiLo
Loam	7.45	Lo	4	SaLo, SaCILo, CILo, SiLo
Silty Clay	4.00	SiCl	3	Cl, ClLo, SiClLo
Silty Clay Loam	5.00	SiCILo	4	SiCl, Cl, ClLo, SiLo
Silt Loam	16.50	SiLo	5	Si, SaLo, Lo, CILo, SiCILo
Silt	3.45	Si	1	SiLo

Evaluation (NA, ANA)

All Bands										
Region (Best Classifier)	Texture class	% in Correct Classes	% in Neighbour Classes	% in Far Classes						
	Sa	50	4	46						
	LoSa	8	61	31						
	SaLo	37	32	31						
	SaClLo	17	12	71						
	SaCl	0	100	0						
VNIR	Cl	94	2	4						
(MNLR)	CILo	2	82	16						
	Lo	5	54	41						
	SiCl	0	68	32						
	SiClLo	19	68	13						
	SiLo	67	15	18						
	Si	0	100	0						

Percentage Distribution of the classifications for a given texture class into correct class, neighbouring classes and far classes in the testing database using all bands in VNIR region

VNI	IR (MN	LR)	Measured Classes (%)											
	Text	ure	Sa	LoSa	SaLo	SaClLo	SaCl	Cl	CILo	Lo	SiCl	SiClLo	SiLo	Si
	Sa	a	50	23	14	0	0	0	3	12	5	1	7	0
	Los	Sa	4	8	1	0	0	0	0	0	0	0	0	0
(%)	Sal	Lo	18	38	37	12	0	2	13	20	7	10	8	0
es	SaC	lLo	3	6	9	17	7	1	3	0	0	0	0	0
ass	Sa	CI	0	0	0	0	0	0	0	0	0	0	0	0
ן כו	С	I	7	4	14	68	93	94	57	22	61	24	11	0
cte	CIL	.0	0	0	1	0	0	0	2	0	0	0	0	0
edi	Lo	מ	1	4	3	0	0	0	2	5	0	1	2	0
Pre	Si	CI	0	0	0	0	0	0	0	0	0	0	0	0
	SiC	Lo	1	0	2	1	0	2	6	8	7	19	5	0
	Sil	.0	15	17	19	3	0	1	14	34	20	44	67	100
	S	i	0	0	0	0	0	0	0	0	0	0	0	0
r					Con	fusi	on r	na	trix					
	Sa	LoSa	SaLo	SaCILo	SaCl	U	CILo	٩	sicl	SiClLo	SiLo	Si	Clas	ises
	0	1	0	0	0	0	0	0	0	0	0	0	Sa	э
	1	0	1	0	0	0	0	0	0	0	0	0	Los	Sa
	0	1	0	1	0	0	0	1	0	0	1	0	Sal	0
	0	0	1	0	1	0	1	1	0	0	0	0	SaC	Lo
	0	0	0	1	0	1	1	0	0	0	0	0	Sa	Cl
	0	0	0	0	1	0	1	0	1	1	0	0	С	1
	100			-				-			-		-	

Neighbouring class matrix

0

0

0

0 0

1

0

0

Lo

SiCl

SiClLo SiLo

Si

Results – All bands

- Which region is better? VNIR, MIR or VNIR+MIR
- Which classifier is better? MNLR or SVM

Figure The texture classification on the testing database for MNLR and SVM classifiers indicating : (a) Overall Accuracy (%), (c) Kappa and (e) Added Neighbourhood Accuracy (%) using all bands

Results – Key points

- VNIR+MIR regions classified with mean OA 62.53 %, mean Kappa of 0.56 and mean ANA of 93.05 %
- Top 3 easily classified textures Clay, Silt Loam, and Sand
- Top 3 difficult to classify textures Silt, Sandy Clay, and Silty Clay
- No spectral region or classifier classified Silt
- Difficult to classify textures Silt, Sandy Clay, and Silty Clay; were majorly misclassified into neighbour classes
- Extensive far class misclassification (≥ 30%) in 6 texture classes in VNIR and none in MIR, VNIR+MIR regions
- MNLR outperformed SVM in all regions

Methodology

Band Selection

- Partial Information (PI) measures the partial dependence and selects predictor variables depending on the response variable.
- PI can identify the predictor variables without making any assumptions about its form or model representation.
- A sample estimate of PI(R, P|Z) (i.e., partial dependence of response variable R with a potential predictor P conditional to the preselected predictor set Z) is calculated as:

$$\widehat{PI}(R, P|Z) = \frac{1}{n} \sum_{i=1}^{i=n} \log \left[\frac{f_{R|Z, P|Z}(r_i, p_i|Z_i)}{f_{R|Z}(r_i|Z_i) * f_{P|Z}(p_i|Z_i)} \right]$$

 $f_{R|Z}(r_i|Z_i)$, $f_{P|Z}(p_i|Z_i)$ marginal probability density function of R and P conditional on Z respectively

 $r_i, p_i, Z_i; i = 1, ..., n$, are sample observations of R,P and Z respectively

• The PIC is derived from PI by scaling it to a (0,1) as:

$$\widehat{PIC} = \sqrt{1 - \exp(-2\widehat{PI})}$$

• 20 spectral groups were used with entropy calculation by equal width discretization

Source: Paul S. & Nagesh Kumar, (2019)

Band Selection

Clay absorbance spectra with all bands and PIC selected bands in VNIR region (separated by factor of 0.2 for illustration)

Results – PIC selected bands

- Which region is better? VNIR, MIR or VNIR+MIR
- Which classifier is better? MNLR or SVM
- Does reduced band help in classification?

No. of bands	VNIR	MIR	VNIR+MIR
All bands	204	1762	1966
PIC selected bands	15	29	44

Figure The texture classification on the testing database for MNLR and SVM classifiers indicating : (b) Overall Accuracy (%), (d) Kappa and (f) Added Neighbourhood Accuracy (%) using PIC selected bands

Results – Important spectral features of soil

- Single bond stretching of O-H from free water and clay lattice in 400 2440 nm
- Single bond stretching mainly from C-H, O-H of water and clay lattice in 2441 4000 nm
- Triple bond stretching of C=C, C=N in 4001 5000 nm
- Double bond stretching of C=O and features of quartz in 5001 6666 nm
- Fingerprint region with feature of silicates and quartz in 6667 14286 nm

Results – Key points

- VNIR+MIR_PIC classified with mean OA 56.23 %, mean Kappa of 0.47 and mean ANA of 89.08 %
- Top 3 easily classified textures Clay, Sand and Sandy Loam
- Top 3 difficult to classify textures Silt, Sandy Clay, and Silty Clay
- No spectral region or classifier classified Silt, Sandy Clay
- Difficult to classify textures Silt, Sandy Clay, and Silty Clay; were majorly misclassified into neighbour classes
- Extensive far class misclassification (≥ 30%) in 4 texture classes in VNIR and in 2 texture classes in MIR, VNIR+MIR regions
- SVM outperformed MNLR in MIR and VNIR+MIR regions

Discussions

- Which region is better? Do reduced bands help classification?
 - MIR (more fundamentals); Yes (suitable chromophores)
- Which soil texture class is suitably classified?
 - Clay, Sand (Clay minerals, spectrally active)
- Is misclassification more in neighbouring classes than far classes?
 - Yes (~30%)
- Why certain texture classes perform poor in classification?
 - Silt (Measurement error, methodology, areal representation, decision rules, low no. in training)

Comparison with literature

Reference	Data Used Method	Total (Train Test)	No. of Classes	Class type	Testing Accuracy ± Std. Dev (%)
Barnes, 2000	Landsat 5 ISODATA	303(NA)	3	Sandy Loam, Sandy Clay Loam, Clay Loam	51
Zhai, 2006	Landsat 5 NN	443(354 89)	3	Loam, Clay Loam, Clay	65.7 ± 1.8
DeMatte, 2016	Landsat 5 GMLC	504(300 204)	4	Sand, Sandy Loam, Clay Loam, Clay	63.8
Gomez, 2019	Sentinel 2 Lin-SVM	130(91 39)	4	Sandy Loam, Sandy Clay Loam, Sandy Clay, Clay	50
Mouazen, 2005	Lab Spectra FDA	365(244 121)	3†	Sand, Loam, Clay	85.1
Jia, 2019	Lab Spectra RBF- SVM	198(132 66)	4 [‡]	Clay, Clay Loam, Loam, Sand	78.8
Gouda,2021	Lab Spectra LUCAS LightGBM	14454(12087 2367)	3*	Fine, Medium, Coarse	75
Gouda,2021	Lab Spectra ICRAF LightGBM	2416(2021 395)	3*	Fine, Medium, Coarse	75
This paper	Lab Spectra ICRAF MNLR	3643 (2737 906)	12	All 12 Classes	62.5 ± 1.2

*Canadian soil texture classification; ⁺ Belgium soil texture classification; [‡] International Soil Society classification;

Conclusions

- Best classification performance using MNLR in combined VNIR+MIR region with OA 62.53%, K of 0.56 and ANA of 93.05%
- PIC bands provide slightly lower classification but huge reduction in the number of bands (>93% reduction in number of bands)
- MIR compared to VNIR region provides around 11 to 17% higher accuracy
- VNIR+MIR provide only slight improvement in accuracy over the MIR region
- A texture class is more misclassified into its Neighbouring classes than in far class. Allowing this misclassification, the overall accuracy increases by around 30%
- Remote textural classes i.e. Clay, Silt Loam, and Sand texture, have good classification performance as compared to intermediate textural classes i.e. Silt, Sandy Clay, and Silty Clay

Applications

- Quick qualitative inference on texture (~few hours)
- Improved quantitative predictions using qualitative predictions
 - Clay content, OM, OC, N, moisture content, hydraulic conductivity, erosion modelling, etc
- Reduced model complexities
- Quantifying uncertainties in neighbouring classes
 - Definition of neighbour in distance term needs to be studied
- Classification performances from the regression techniques for sand, silt, and clay fractions
- Simulation of lab spectra to upcoming satellite mission for evaluating soil texture classification either in quantitative or qualitative fashion

Working details

- Data available at (<u>www.isric.org</u>)
- Codes available at (<u>https://github.com/ternikarcr/Texture_Classification.git</u>)
- Codes in Python sklearn package, R NPRED package
- Graphs in Origin Pro

Memories

- SARI meeting in Philippines, 2018
- GEE, HPC Global Landsat Mosaic

- Don't be intimidated, Subject matter experts never go out of job

- Prof. Chirag Jain Why the similarities and Why the differences?
 All my discussion sections are structured in this manner
- Dr. Thuy Le Toan Young researchers need to open source the data
 No data over India

Acknowledgement

Ternikar Chirag Rajendra Research Scholar WREE, Civil Engg. at **IISc**, Bangalore (India)

Dr. Cécile Gomez Research Scientist at IRD (France), IFCWS at IISc, Bangalore (India)

Dr. D Nagesh Kumar Professor in Civil Engg., CEaS, DCCC at **IISc**, Bangalore (India)

Thanks to **Dr. Laurent Ruiz** (Indo-French Cell of Water Science) and **Prof. Sekhar Muddu** (Civil Engineering Department) of IISc for their thoughts and discussion through which the core idea of this paper was conceptualized.

Agrocares Scanner

- Temperature Sensor NTC resistance probe
- Near Infra Red Spectrometer (1) MEMS technology Wavelength Range (1300-2550 nm)
- EC Probes (6) electrical conductivity probes with alternate 1 kHz bi-polar measurement
- One of a kind soil nutrient device based on spectroscopy
- Measure pH, Organic Carbon, Total P, N, K exchange, Cation exchange, Soil Temperature; Suggests suitable crop types
- Cost 3000 Euros ~ 3 lakh Rs. (Wageningen, Netherlands)

Source: <u>https://www.agrocares.com</u>

THANK YOU