|
Professor , Geaorge Mason University
Understanding Changes in Agricultural Land Use and Land Cover in the Breadbasket Area of the Ganges Basin 2000-2015: A Socioeconomic-Ecological Analysis
In South Asia, agriculture faces the remarkable challenge of feeding a growing population, projected to increase 43.8% by 2050, with extremely limited per capita arable land. Adding to the complexity of the challenge is the rapid economic development and urbanization over recent years, which competes for land with the agricultural sector and threatens the remaining forest cover. The Ganges Basin is the breadbasket of South Asia. Its agricultural outputs feed almost one-tenth of the world population. The densely populated region is home to numerous cities that have undergone rapid expansion in recent decades. Forest and wetland ecosystems are under increasing threats from intensified agricultural land use and pressure from urban spatial expansion. South Asia plays a central role in the global effort (such as the United Nations Sustainable Development Goals) to achieve sustainable development and food security. A deeper understanding of the drivers and socioeconomic and ecological impacts of land cover and land use change (LCLUC) in the basin is essential to better inform land use policies. This proposed project will combine remote sensing and geographic information system (GIS) techniques with an integrated modeling approach to 1) identify and assess LCLUC that occurred in the major agricultural area of the Ganges Basin (including India and Bangladesh) during 2000; 2015; 2) identify and quantify the primary socioeconomic drivers of LCLUC; 3) develop scenarios of future LCLUC (up to 2030) based on projected changes of key drivers; 4) evaluate the main impacts of LCLUC on key indicators of food and nutrition security, income, ecosystem services, land degradation, and resilience; and 5) disseminate research findings and reach out to stakeholders to ensure that the research helps to inform sustainable development strategies and responds to the needs of policy makers. In this project, LCLUC includes changes in agricultural land cover/use at three levels: 1) land use change from agricultural to non-agricultural use, or vice versa; 2) change in cropping systems, such as from rice to maize; and 3) change in the intensity of agricultural land use. The integrated modeling framework includes three modeling components: 1) a global agricultural partial equilibrium model, 2) a spatially explicit econometric land use model, and 3) an ecosystem services evaluation model. This research will enable us to answer some of the key scientific questions related to LCLUC in the basin: What are the dominant LCLUCs, including agricultural intensity and cropping system changes, in the breadbasket region of the Ganges Basin during 2000’2015? What are the major socioeconomic drivers of LCLUCs during 2000’2015 and how did economic development, population growth, and the accompanying structural transformation such as urbanization affect the changes? What are the impacts of LCLUCs on key indicators of food and nutrition security, income, ecosystem services, land degradation, and resilience? This proposed project will make two novel contributions to NASAs LCLUC program. First, it will develop state-of-art remote-sensing techniques to identify level-2 and level-3 LCLUC in developing country context where farm and field sizes tend to be small. Second, this project will employ economic theories and methods, particularly an integrated modeling framework, to identify and quantify major drivers and impacts of LCLUC in the study area. This proposed project will contribute to the scientific knowledge base regarding integrated dynamics of LCLUC and socioeconomic systems at regional, national, and global scales, enhance evidence-based and science-guided decision-making concerning food security and sustainable agricultural development, and support the United Nations 2030 Sustainable Development Goals.
|
|
Professor, Virginia Polytechnic Institute and State University
Spatiotemporal Drivers of Fine-Scale Forest Plantation Establishment in VillageBased Economies of Andhra Pradesh
The Indian state of Andhra Pradesh, our study area, has decreased in overall forest cover in recent years, with concomitant (though not commensurate) increases in forest plantation area, largely through conversion of degraded and existing agricultural land. Unfortunately, however, accurately mapping forest plantations in India using remotely- sensed data has been difficult because: (1) many plantations are small relative to moderate resolution earth resource satellite data, (2) newly established plantations are very difficult to identify, and (3) the surrounding cropland area is very variegated in both time and space. A concomitant socio-economic issue is the relatively unknown incentives and risks associated with establishing plantations within the broader land use context at the decision maker level in this region. Leveraging forest industry partnerships and strong extant approaches pioneered by our team, our overall goals are to (1) improve the accuracy and precision by which forest degradation and plantation establishment can be remotely-sensed using data from ResourceSat-1, Landsat, SPOT, and/or RapidEye; and (2) determine the most predictive local, regional, village, and household based drivers of plantation forest establishment (the social science aspect of the proposed study). Our proposed research is particularly responsive to the solicitation, as it (1) couples remote sensing observations (using both NASA and synergistic non-NASA assets) from which land-cover can be derived with research on the human dimensions of land-use change, (2) is explicitly focused on the South Asia geographic region of interest, (3) improves the detection, monitoring, and predictions of land cover and land use change in the region, (4) attributes land cover and land use changes to their primary causes, and (5) provides a formal means and rigorous method for evaluating the socially best land use mix over time as the region develops. The primary expected outcomes are as follows: (1) improvements to algorithms from which both discrete and continuous land use and land cover change variables can be remotely-estimated in this tropical, fine-scale, temporally dynamic, and spectrally variegated landscape, and (2) an empirical realization of forest plantation establishment in village-based economies where smallholders establish forest plantations on previously degraded lands for both timber and non-timber use, using a unique data set developed over time and space through the period covered by the proposal. Deliverables will include, but not be limited to, the following: (1) a map of plantations, natural forests, degraded forests, and primary non-forest land uses in East and West Godavari, (2) a system of equations resulting from the econometric analysis, with a rent function describing the net returns from each land use option for a household, and a response model of the decision to establish forest plantations on existing and new land as a competing land use with other uses such as agriculture and grazing. Our tentative schedule is as follows: Year 1: (1) develop econometrics survey instrument, (2) use high-resolution remotely-sensed data in concert with in situ reference data to (a) develop tree canopy cover dependent variable distributions (b) map plantations and other key land uses in East and West Godavari circa 2016, (3) use resulting map and ancillary data to develop sampling strata for survey, (4) distribute and collect survey instruments. Year 2: (1) refine tree canopy cover (both static and dynamic) estimation approaches using Landsat data, (2) analyze survey data; develop econometric models. Year 3: (1) map canopy cover and change in the region, (2) assess how property rights risks and future market opportunities for competing uses affect forest plantation establishment, (3) quantify the errors associated with non-integrated land use change modeling. Overall, our study has strong potential to help enrich LCLUC science in South Asia.
|